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Abstract—Principal component analysis (PCA) is an effective
tool for spectral decorrelation of hyperspectral imagery, and
PCA-based spectral transforms have been employed successfully
in conjunction with JPEG2000 for hyperspectral-image com-
pression. However, the computational cost of determining the
data-dependent PCA transform is high due to its traditional
eigendecomposition implementation which requires calculation
of a covariance matrix across the data. Several strategies for
reducing the computation burden of PCA are explored, includ-
ing both spatial and spectral subsampling in the covariance
calculation as well as an iterative algorithm that circumvents
determination of the covariance matrix entirely. Experimental
results investigate the impacts of such low-complexity PCA on
JPEG2000 compression of hyperspectral images, focusing on
rate-distortion performance as well as data-analysis performance
at an anomaly-detection task.

Index Terms—principal component analysis, hyperspectral
image compression, JPEG2000, spectral decorrelation, anomaly
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I. INTRODUCTION

The vast data volumes contained in typical hyperspectral

imagery have entailed an increasing interest in wavelet-based

lossy compression techniques which have exhibited excellent

rate-distortion performance in many image-processing appli-

cation settings. Prominent wavelet-based techniques include

SPIHT (Said and Pearlman 1996) and SPECK (Pearlman,

Islam, Nagaraj, and Said 2004), both of which having been

extended to 3D for the compression of hyperspectral imagery

(Kim, Xiong, and Pearlman 2000; Tang and Pearlman 2005).

Yet, it is perhaps the recent JPEG2000 standard (Taubman and

Marcellin 2002), that has garnered the most attention and has

been the most widely deployed in hyperspectral applications

(e.g., (Rucker, Fowler, and Younan 2005; Kulkarni, Bilgin,

Marcellin, Dagher, Kasner, Flohr, and Rountree 2006; Penna,

Tillo, Magli, and Olmo 2006b; Fowler and Rucker 2007; Du

and Fowler 2007)). However, direct extension to 3D of algo-

rithms such as these that were, in essence, originally designed

for 2D imagery may be problematic without considerations

of characteristics specific to hyperspectral imagery (Pickering

and Ryan 2006).

In general, JPEG2000 is increasing in prominence because

it is a widely-used standard and because its performance tends

to be superior to that of other wavelet-based techniques—

according to our experience in hyperspectral-image compres-

sion, JPEG2000 usually provides a signal-to-noise (SNR)1

that is about 0.1–0.5 dB higher than that of SPIHT or

SPECK operating at the same bitrate2. For example, Table I

1We define SNR as the log ratio between the variance of the original image
and that of the difference image.

2We measure rate in terms of bits per pixel per band (bpppb).

compares the rate-distortion performance 3D-SPIHT (Kim,

Xiong, and Pearlman 2000), 3D-SPECK (Tang and Pearlman

2005), and JPEG2000 for three popular AVIRIS radiance

datasets. For these results, each of the coders uses a wavelet

packet transform consisting of a 1D discrete wavelet transform

(DWT) deployed spectrally followed by a dyadic 2D DWT

deployed spatially—this particular 3D transform structure has

been employed widely (Fowler and Rucker 2007) and has

been shown to offer near-optimal performance over all possible

packet transforms (Penna, Tillo, Magli, and Olmo 2006b).

Although a 3D DWT such as used in Table I is perhaps the

most obvious transform choice, other approaches are possible.

In particular, principal component analysis (PCA) is a widely-

used technique that has demonstrated excellent performance at

spectral decorrelation. PCA can be deployed in hyperspectral

compression by replacing the 1D DWT in the transform used

in Table I with a 1D spectral PCA. The resulting hybrid trans-

form consisting of spectral PCA coupled with spatial DWT

is compliant with the multicomponent-transformation exten-

sion of Part 2 of the JPEG2000 standard (ISO/IEC 15444-

2 2004), and it has been been demonstrated that JPEG2000

using this transform (which we call “PCA+JPEG2000”) yields

superior rate-distortion performance (Du and Fowler 2007).

For example, Fig. 1 compares the rate-distortion performance

of PCA+JPEG2000 with that of DWT+JPEG2000, the corre-

sponding coder in which the spectral transform is a DWT. We

observe that, although the two coders differ only in the spectral

transform employed, there is up to a 5-dB gap between the

two techniques.

Since the number of spectrally distinct signal sources

composing a given hyperspectral scene is limited, it has

been argued that the spectral dimensionality intrinsic to a

hyperspectral image is typically much less than the number

of spectral bands. As a consequence, we expect that many

principal components (PCs) contain essentially noise only. For

example, in (Chang and Du 2004), a virtual dimensionality

(VD) was estimated by counting the number of PCs containing

signals via hypothesis testing to determine the minimum num-

ber of spectrally distinct signals present in the dataset. These

observations argue that, for data compression, one should

encode only a subset of PCs rather than the full complement.

Indeed, in (Du and Fowler 2007), such an action resulted in an

improvement in rate-distortion performance for a PCA-based

spectral transform. In this sense, PCA is exploited not only for

spectral decorrelation, but also for explicit spectral dimension-

ality reduction. As shown in Fig. 2, choosing the ideal number

of PCs to retain can result in a significant improvement in

SNR, particular at low bitrates. In (Du and Fowler 2007), it

was also determined that data-analysis performance, such as
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anomaly detection, is also similarly maximized by coding a

subset of PCs rather than the full number, and the number of

PCs that yields maximum SNR for a given dataset is usually

close to the number of PCs that yields maximum detection

performance. A simple linear model was proposed in (Du

and Fowler 2007) to estimate the optimal number of PCs for

different bitrates.

These prior investigations have revealed that a PCA-based

spectral transform can be quite advantageous in the compres-

sion of hyperspectral imagery. Yet, PCA is a data-dependent

transform, meaning that the transform itself must be calculated

for each individual dataset before it can be applied. Unfortu-

nately, the computational complexity of this transform-design

process is quite substantial, a fact that has hindered greater

adoption of PCA-based transforms in practice. In this paper,

we explore the reasons for this high computational cost, as well

as several ways to circumvent it. Specifically, we see that the

calculation of a covariance matrix underlies the majority of

the computation, and that effectively subsampling the dataset

can ease the computational burden. Additionally, we find that

avoiding calculation of the covariance matrix in the first place

by directly producing the transform via neural-network-based

iterative PCA (IPCA) (Baldi and Hornik 1995) is feasible in

certain instances of low-rate coding. Such an approach differs

from others that employ direct matrix operations to conduct

PCA (e.g., (Dremmel 1997)) since the covariance matrix must

be explicitly calculated in this latter case.

Hardware implementation of PCA based on both matrix

operations as well as neural networks has been studied. For

PCA based on matrix operations, systolic arrays have been

used to compute eigenvectors via singular value decomposi-

tion (SVD) (Schreiber 1986). Additionally, parallel processing

(Subramanian, Gat, Ratcliff, and Eismann 2000; Fleury, Self,

and Downton 2004; Kumar, Kamakoti, and Das 2007) has

been employed; in such schemes, the covariance-matrix com-

putation and PC transform permit fine-grain parallelism but the

eigenvector generation does not, leading to an offline computa-

tion of the latter in many cases. PCA based on neural networks

is generally more suitable to VLSI implementation because

of topology regularity. For example, a systolic-array mapping

was discussed in (Diamantaras and Kung 1996). As for hard-

ware design and implementation in field-programmable gate

arrays (FPGAs), pulsed-circuit architectures based on pulse-

density modulation and delta-sigma modulation can be found

in (Hirai and Nishizawa 2000) and (Murahashi, Hotta, Doki,

and Okuma 2004), respectively, and a fully digital design was

presented in (Prasanna, Sudha, and Kamakoti 2005). Each of

these schemes implement a well-known neural-network PCA

called Generalized Hebbian learning (Sanger 1989). In the

work here, we also use PCA based on Hebbian learning, but

with a slightly different algorithm. Consequently, even though

our focus in this paper is on algorithmic issues surrounding

spectral PCA for hyperspectral imagery, (Diamantaras and

Kung 1996; Hirai and Nishizawa 2000; Murahashi, Hotta,

Doki, and Okuma 2004; Prasanna, Sudha, and Kamakoti 2005)

suggest a number of paths toward a hardware implementation

of our approach.

The remainder of the paper is organized as follows. In

Sec. II, we describe the computational complexity of PCA

and delineate the components with the largest computational

load. In Sec. III, we explore various alternatives for low-

complexity PCA, including subsampling both spatially and

spectrally in additional to IPCA implemented with a neural-

network architecture. Then, in Sec. IV, we investigate the

impact that the proposed low-complexity PCA strategies have

on not only rate-distortion performance, but also data-analysis

performance at an anomaly-detection task. Finally, we make

some concluding remarks in Sec. V. We note that a number of

the investigations presented here originated in the preliminary

work and results of (Zhu 2007).

II. COMPUTATIONAL COMPLEXITY OF PCA

Suppose we have a dataset consisting of M vectors xi, 1 ≤
i ≤M , wherein each vector has dimension N ; i.e., xi ∈ ℜ

N .

A linear transform T maps from N -dimensional space to P -

dimensional space (P ≤ N ),

yi = T (xi) ∈ ℜ
P . (1)

For finite dimensions, T (·) is a vector-matrix multiplication

involving a P ×N matrix T,

yi = Txi, (2)

an operation that requires PN multiplications, i.e., an opera-

tion of complexity O(PN).
Assume a hyperspectral image consists of a total of M

pixels in N spectral bands. Like other linear transforms,

PCA that retains P PCs can be applied via (2) as a spectral

transform on the hyperspectral image with complexity, CT,

CT = O(MPN). (3)

However, unlike other linear transforms, PCA is data depen-

dent, and the transform matrix T itself must be determined

before (2) can be applied. This tends to be a costly process,

and herein lies the primary drawback of PCA in compression

applications.

The straightforward procedure for determining T for PCA

consists of two steps:

Step 1: calculate the covariance matrix Σ of the set of pixel

vectors;

Step 2: decompose Σ to find its eigenvectors,

with the resulting eigenvectors placed row-wise to assemble T.

The determination of Σ in Step 1 needs MN2 multiplications

and thus is of complexity CΣ,

CΣ = O(MN2). (4)

On the other hand, the eigendecomposition of Step 2 can be

accomplished by any of a number of matrix-diagonalization

methods of varying complexity. For instance, singular value

decomposition (SVD) is widely used for this purpose due

to its numerical stability. SVD decomposition finds all N

eigenvectors such that its computational complexity, CΛ, is

CΛ = O(N3). (5)
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However, we need only the first P eigenvectors to assemble

T, assuming that the eigenvectors are sorted in order of de-

scending eigenvector magnitude. Fig. 2 suggests that the ideal

P is much smaller than N (P ≪ N ) for typical hyperspectral

imagery; thus, Hotelling’s power method (Hotelling 1933), an

iterative procedure that finds only the largest eigenvalues and

their corresponding eigenvectors, is more reasonable, since its

complexity is O(PN2).
Because the number of pixels M in a remotely sensed image

is typically much larger than the number of bands N , CΣ
usually dominates both CΛ well as CT. That is, the complexity,

CPCA, of the traditional eigendecomposition approach to PCA

is

CPCA = CΣ + CΛ + CT

= O(MN2). (6)

For example, consider a hyperspectral image of spatial size

512 × 512 with 224 spectral bands. The calculation of Σ

requires CΣ = 512×512×2242 ≈ 1.3×1010 multiplications,

while only an additional CΛ = 2243 ≈ 1.1 × 107 multiplica-

tions are required to find the eigenvectors via SVD. If, say,

40 PCs were to be retained for the spectral transform, CT =
512× 40× 224 ≈ 2.3× 109 multiplications would be devoted

to performing the spectral transform itself, still an order of

magnitude less complex than the covariance computation.

III. APPROACHES TO REDUCTION OF PCA COMPLEXITY

Since CPCA is dominated by CΣ, the most straightforward

approach to reducing PCA complexity focuses on reducing

the two components of CΣ, namely, M or N (or both). This

is accomplished by subsampling the dataset either spatially

or spectrally in advance of the covariance-matrix calculation;

these approaches are discussed below in Sec. III-A. However,

in certain situations, it is possible to determine the PCA

eigendecomposition without first explicitly determining the

covariance matrix. We outline one such method based on

a neural network and determine when the use of such a

technique is warranted below in Sec. III-B.

A. Subsampling for Complexity Reduction

A straightforward approach to reducing the computational

complexity of PCA is to decrease M in (6). That is, instead

of using all M pixels, only a small subset of pixels of size

M ′, M ′ ≪ M , is used to estimate Σ. The transform matrix

T is then determined from the estimated covariance matrix,

Σ̂, following the usual eigendecomposition procedure, which

now has complexity

CSS+PCA = O(M ′N2). (7)

Here, “SS+PCA” denotes PCA coupled with spatial subsam-

pling for the calculation of the covariance matrix. We assume

here that we ignore CT as a fixed cost of applying any linear

transform (PCA or other) to focus solely on the transform-

design costs.

While M ′ needs to be relatively small in order to reduce

computational complexity to the greatest extent, we must

choose M ′ to be sufficiently large so as to adequately capture

the stastical variation in the dataset. This will, in turn, depend

on how many PCs we want to obtain, since a greater number

of PCs will require a larger M ′. We adopt the general heuristic

that we need at least an order of magnitude more samples than

the number of items we wish to obtain through training—a

similar heuristic was often employed to determine the size of

a training set for vector quantizers; e.g., see observations in

(Makhoul, Roucos, and Gish 1985) surrounding the design

of vector quantizers for speech signals. Since we need to

determine N PCs for full PCA, this heuristic dictates that M ′

should be at least 10N . In this case, with M ′ ≫ N , CΣ still

dominates CΛ in (6).

An alternative approach would be to decrease N in (6)

to N ′ < N . This can be accomplished by removing water-

absorption bands and other spectral bands likely to be mostly

noise before determining the covariance matrix. This approach

is reasonable since such high-noise bands are not typically

useful in many hyperspectral applications, provided that iden-

tification of the high-noise bands can be easily accomplished

with little computation. In the case of water-absorption bands,

this is certainly the case, since water absorption occurs at

known frequency ranges.

It should be noted that subsampling the hyperspectral

volume to M ′ or N ′ results in a transform that is only

approximately the spectral PCA of the original image. As a

consequence, there is likely to be a deleterious effect on per-

formance resulting from the approximate transform. (Penna,

Tillo, Magli, and Olmo 2006a) suggests that the degradation to

rate-distortion performance is minimal; below, we investigate

this as well as the effect on data-analysis performance in the

form of anomaly detection.

B. IPCA

When the number of PCs P preserved for compression

is small, IPCA may be preferred, since, in this approach,

the calculation of Σ is not explicitly performed. Rather, the

complexity required to find an eigenvector increases linearly

with N and M . Our approach to IPCA employs a neural

network and well-known Hebbian learning. The neural net-

work has a simple feedforward structure—one input layer with

N neurons, an output layer with one neuron, and weights

connecting the input neurons to the output neuron. After

convergence, the output neuron provides the largest eigenvalue

with the weights representing the corresponding eigenvector.

Let w1 denote the first eigenvector to be estimated. Denote

the neural-network input as x (a pixel vector from the hyper-

spectral image) and the output as λ1 = wT
1 x. According to

the Hebbian learning rule (Haykin 1999), the weight update

is

∆w1 = αλ1x, (8)

where α is the learning rate; for simplicity here, we set α = 1.
The weight vector must be normalized to prevent unlimited

growth. Therefore, the additional equations for update are

w1 ← w1 + ∆w1, (9)

w1 ←
w1

‖w1‖
. (10)
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In sequential mode, w1 is updated after each pixel is presented

to the network. On the other hand, in batch mode, w1 is

not updated until after all the pixels from the image are

presented to the network. We find that batch mode provides

more accurate results; i.e., the final result is closer to the

actual eigenvector. As a consequence, we consider batch-mode

training exclusively in the following.

After w1 is estimated, the second eigenvector w2 can be

determined similarly. However, the dataset is first projected

onto the first eigenvector w1, and this projection removed

before w2 is determined. Likewise, to estimate eigenvector

i, wi, projections along the previous i − 1 eigenvectors are

removed before the data is presented to the neural network.

In other words, the update equation when estimating wi for

i > 1 is

x← x−wi−1w
T
i−1x. (11)

This process, akin to Gram-Schmidt orthogonalization, guar-

antees extraction of a set of mutually orthogonal eigenvectors.

The detailed IPCA algorithm is as follows:

Step 1: Let i = 0 and w0 = 0.

Step 2: Let i← i + 1 and use (11) to update xm, 1 ≤ m ≤
M .

Step 3: Let k = 0. Initialize w
(0)
i with a random vector

orthogonal to all wj for 1 ≤ j ≤ i.

Step 4: Let k ← k + 1. If k = Kmax, set wi ← w
(k−1)
i and

go to Step 2 for the next eigenvector. Otherwise, use

(8)–(10) to update w
(k)
i .

Step 5: If

∥∥∥w(k)
i −w

(k−1)
i

∥∥∥ < η, w
(k)
i is considered to have

converged to the ith eigenvector, so set wi ← w
(k)
i .

If i = P , terminate. Otherwise, go to Step 2 to

find the next eigenvector. On the other hand, if∥∥∥w(k)
i −w

(k−1)
i

∥∥∥ ≥ η, go to Step 4 for the next

iteration on w
(k)
i .

It should be noted that this one-output neural network finds

the eigenvectors sequentially, one after another, while data

orthogonalization is achieved by simple matrix multiplication

outside the neural network. On the other hand, Generalized

Hebbian learning (Sanger 1989) uses multiple outputs to find

multiple eigenvectors simultaneously—its weight-update equa-

tion thus includes data orthogonalization (Haykin 1999). There

are two advantages to our algorithm: 1) it is more flexible

in generating an arbitrary number of eigenvectors as needed

because of its sequential nature; and 2) it requires fewer

multiplications since data orthogonalization is accomplished

in a single step.

Let K1, K2, . . . , KP be the number of iterations required

to find the first P eigenvectors, respectively, in the algorithm

above. Clearly, these values will depend on the threshold η.

If η is very small, then many iterations will be needed to find

an eigenvector; however, the maximum difference between

the estimated and true eigenvectors will be guaranteed to be

small. We have found that, for η = 10−3, each component

of the estimated eigenvectors differs from its corresponding

true value by less than 10−4, while the number of iterations

remains small. Since the number of multiplications in each

iteration is MN , the complexity for finding the P eigenvectors

via IPCA is

CIPCA = O

(
P∑

i=1

KiMN

)

= O
(
K̄PMN

)
, (12)

where K̄ is the average number of iterations,

K̄ =
1

P

P∑

i=1

Ki. (13)

Clearly, when the number of eigenvectors P to be estimated

is large, then IPCA will not result in reduced complexity as

compared to PCA. The largest P that still yields reduction

in complexity with respect to PCA can be approximately

determined by the following. By comparing (12) to (6), we

see that, for complexity reduction, we need

K̄PMN < MN2. (14)

Thus, P is approximately bounded as

P /

⌊
N

K̄

⌋
. (15)

For example, if N = 224, and K̄ = 5, then P / 44.

Clearly, to achieve significant reduction of computational

complexity using IPCA, K̄ needs to be small. We have found

that, when determining the first several eigenvectors, the neural

network tends to converge quickly. That is, Ki tends to be

small—say, less than 5—for small values of i. However, many

more iterations are typically needed to find the eigenvectors

for larger values of i. This effect is due to the fact that the

eigenvectors wi are mutually orthogonal, and it becomes more

and more difficult for a randomly initialized wi to converge

to a vector that is orthogonal to all the previous eigenvectors.

One approach to partially alleviating this difficulty is to

initialize wi to a random vector that is orthogonal to all other

eigenvectors already determined, a process which is easily

accomplished via a Gram-Schimdt orthogonalization (as we

have done above). To make K̄ sufficiently small so as to

significantly reduce complexity as compared to PCA, each

wi is updated with a certain number of iterations not greater

than Kmax, a fixed upper bound. Since Kmax is itself small,

K̄ ≈ Kmax. This upper bound entails encoding the image

using a spectral transform that may be somewhat distant from

the true spectral PCA. Below, we investigate the impact of this

approximate spectral transform on rate-distortion as well data-

analysis performance. First, however, let us note that IPCA can

be applied in conjunction with spatial subsampling, leading to

a complexity of

CSS+IPCA = O(K̄PM ′N) (16)

when M ′ ≪ M pixels are used to drive the IPCA design

procedure.

International Journal of High Performance Computing Applications, vol. 22, pp. 438-448, November 2008.



IV. PERFORMANCE EVALUATION

To evaluate the performance of low-complexity PCA, three

AVIRIS radiance datasets of size 512 × 512 with 224 bands

were used. We use Scene 1 of the Cuprite, Jasper Ridge, and

Moffett radiance datasets3 cropped spatially to size 512× 512
from the upper left corner; band 100 for each of these datasets

is depicted in Fig. 3(a)–(c). In addition to rate-distortion

performance, we are also concerned with object information

that is preserved in the reconstructed data. For such data-

analysis performance, we focus on anomaly detection, wherein

an anomaly is defined as a small object or material whose

spectral signature is very different from the background and,

as such, most likely indicates an unknown target. Anomaly

detection provides a reasonable test of the performance of

lossy compression at information preservation because such

small objects or materials are prone to be sacrificed during

compression; yet such anomalies may be critical in certain

remote-sensing applications. Here, the well-known RX algo-

rithm (Reed and Yu 1990) is employed for anomaly detection,

and, since the exact spatial structure of objects is unknown,

detection is conducted at the pixel level (Chang and Chiang

2002). Due to the lack of real ground truth for the AVIRIS

datasets considered, we employ the detection map resulting

from the original data as “ground truth” in the experimental

results below. Specifically, we compare the detection map

resulting from the reconstructed data to that from the original

data, using as a measure of similarity the spatial correlation

coefficient, ρ. The closer ρ is to 1.0, the better the detection

performance is considered to be. The anomaly-detection maps

for the datasets under consideration are depicted in Fig. 3(d)–

(f).

As discussed in Sec. II, the calculation of the covariance

matrix Σ entails the majority of the computation associated

with the traditional eigendecomposition implementation of

PCA, and subsampling the dataset spatially is a straightfor-

ward approach to cutting this cost. For the results here, we

employ the heuristic of Sec III-A that M ′ ' 10N . With

N = 224 and M = 5122 = 262, 144, we have that M ′

should be roughly 1% of pixels; we note that the results of

(Penna, Tillo, Magli, and Olmo 2006a) were also carried out

using a 1% subsampling rate. Consequently, for the datasets

considered, we set M ′ = 2621, and choose the M ′ pixels

at random. To gauge the effect of spatial subsampling on

the spectral transform, we employ both traditional SVD-based

PCA and IPCA on the subsampled dataset to generate the

eigenvectors and thus the spectral transform. For IPCA, no

more than 5 iterations were used to update each eigenvector;

i.e., Kmax = 5, and K̄ ≈ Kmax. For this Kmax, IPCA will

have approximately the same computational complexity as

SVD when P = 44. In the following, “PCA” refers to a

spectral transform composed of eigenvectors determined from

SVD of the true covariance matrix Σ; “SS+PCA” refers to

a spectral transform composed of eigenvectors determined

from SVD of Σ̂ estimated via a random spatial subsampling

of 1% of the pixels; and “SS+IPCA” refers to a spectral

transform composed of eigenvectors determined from IPCA

3http://aviris.jpl.nasa.gov/

with Kmax = 5 applied to Σ̂ estimated from a random spatial

subsampling of 1% of the pixels.

Fig. 4 compares the first three eigenvectors for the Jasper

Ridge dataset as calculated by the various approaches. The

discrepancy between the eigenvectors of the true covariance

matrix as opposed to those calculated from the covariance as

estimated using only 1% of the dataset is small— specifically,

the spectral angles between the eigenvectors resulting from

subsampling and those of the true covariance matrix are under

3◦ in all cases.

Table II investigates rate-distortion performance when the

low-complexity PCA approaches are used to design spectral

transforms for PCA+JPEG2000 coding. In Fig. 2, it was illus-

trated that rate-distortion performance varies with the number

of PCs retained for coding, with the best performance typically

occurring for some P < N , i.e., when only some subset of

PCs were retained. Along these lines, (Du and Fowler 2007)

presents a simple linear model designed to predict the number

of PCs yielding maximal SNR as a function of the bitrate used

for coding. This model is used here, and Table II compares

the rate-distortion performance for coding with this number

of PCs (P̃ ∗) using the various spectral-transform designs. We

see that the drop in SNR due to using the low-complexity

PCA approaches is typically not greater than 0.1 dB. Thus,

the impact on rate-distortion performance from the use of low-

complexity PCA appears to be rather minimal.

Table III presents a quantitative evaluation of anomaly-

detection performance for PCA+JPEG2000 with low-

complexity PCA. We see that, when P̃ ∗ PCs are retaining

and coded, the correlation coefficient ρ is largely unchanged

when low-complexity PCA is employed. Interestingly, a larger

variation in ρ is seen between traditional SVD-based PCA and

its low-complexity counterpart when all PCs are retained and

coded.

In terms of computational complexity, for spatial subsam-

pling of 1%, the complexity of subsampled PCA, CSS+PCA is

1% of that of traditional SVD-based PCA, CPCA. On the other

hand, the relative speedup of IPCA depends on the number of

PCs retained; for P̃ ∗ = 21, 25, and 38 as used in Tables II

and III, CSS+IPCA of (16) is 0.47%, 0.56%, and 0.85% of CPCA,
respectively. For the datasets considered here, CT, the cost

of applying T as a spectral transform, is actually larger than

either CSS+PCA or CSS+IPCA, the costs of determining T.

Removing spectral bands with low quality (i.e., water-

absorption bands) offers an alternative approach to reduce

complexity. For the three AVIRIS datasets, bands 1–3, 108–

113, 153–169, and 222–224 can be discarded, leaving 195

bands for further processing. Just this simple band removal

reduces the complexity by about 24%, even when all pixels

are used to compute Σ. Table IV compares performance for

PCA+JPEG2000 coding under such “bad-band” removal to

the case in which all bands are coded. Here, PCA is applied

using SVD with no spatial subsampling, and rate-distortion as

well as anomaly-detection performance is tabulated. We see

that distortion, as measured by mean squared error (MSE) as

calculated over only the 195 bands in question, is largely un-

affected by the bad-band removal, while the spatial correlation

coefficient ρ remains unchanged or slightly improved.
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V. CONCLUSION

PCA has been shown to offer significantly improved rate-

distortion and data-analysis performance as compared to a

DWT when used as a spectral transform in JPEG2000 com-

pression of hyperspectral imagery. However, the high com-

putational cost of designing the transform matrix impedes

the adoption of PCA-based transforms in practice. In this

paper, we have investigated several approaches for reducing

computational complexity of PCA. Most straightforwardly,

one can subsample the hyperspectral image spatially before

calculating the covariance matrix as needed in the traditional

eigendecomposition procedure for PCA design; such spatial

subsampling produces a substantial reduction in complexity

with the cost of a transform that only approximates the

true spectral PCA of the dataset. Additionally, the spectral

dimension can be decreased by explicitly removing the water-

absorption bands and other bands of low sensor quality before

PCA is applied. Finally, the cost of computing the covariance

matrix can be avoided entirely by a direct iterative calculation

of the eigenvectors. Such an IPCA approach is feasible when

the number of PCs to be determined is small, as such may be

the case for coding at low bitrates. The experimental results

we have presented reveal that both rate-distortion performance

as well as data-analysis performance in the form of anomaly

detection incur little impact as a result of using the low-

complexity PCA implementations considered here.
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Fig. 1. Rate-distortion performance for JPEG2000 using a PCA-based
spectral transform (PCA+JPEG2000) and a DWT-based spectral transform
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(a) (b) (c)

(d) (e) (f)

Fig. 3. (a)–(c) Band 100 from original images. (d)–(f) Corresponding anomaly-detection maps (contrast-enhanced for visualization purposes). (a) & (d)
Cuprite; (b) & (e) Jasper Ridge; (c) & (f) Moffett.
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Fig. 4. Comparison of the first three eigenvectors for the Jasper Ridge dataset.
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TABLE II

SNR PERFORMANCE (IN DB) OF PCA+JPEG2000 WITH SPECTRAL TRANSFORM DESIGNED VIA LOW-COMPLEXITY PCA

0.05 bpppb 0.1 bpppb 0.25 bpppb

#PCs eP ∗
= 21 all eP ∗

= 25 all eP ∗
= 38 all

Cuprite
PCA 43.1 40.0 45.3 44.4 48.2 47.9

SS+PCA 43.1 40.0 45.1 44.3 48.1 47.8
SS+IPCA 43.1 – 45.2 – 48.1 –

Jasper PCA 34.0 28.8 38.6 36.8 43.4 43.0
Ridge SS+PCA 34.0 28.7 38.5 36.8 43.4 43.0

SS+IPCA 33.9 – 38.5 – 43.3 –

Moffett
PCA 43.1 40.0 45.3 44.4 48.2 47.9

SS+PCA 43.1 40.0 45.1 44.3 48.1 47.8
SS+IPCA 43.1 – 45.2 – 48.1 –

eP ∗ is the number of PCs from the linear model of (Du and Fowler 2007); “all” refers to retaining all N = 224 PCs

TABLE III

ANOMALY-DETECTION PERFORMANCE MEASURED VIA CORRELATION COEFFICIENT ρ OF PCA+JPEG2000 WITH SPECTRAL TRANSFORM DESIGNED

VIA LOW-COMPLEXITY PCA

0.05 bpppb 0.1 bpppb 0.25 bpppb

#PCs eP ∗
= 21 all eP ∗

= 25 all eP ∗
= 38 all

Cuprite
PCA 0.73 0.69 0.75 0.65 0.75 0.69

SS+PCA 0.73 0.70 0.75 0.70 0.75 0.71
SS+IPCA 0.73 – 0.75 – 0.76 –

Jasper PCA 0.96 0.88 0.97 0.95 0.98 0.91
Ridge SS+PCA 0.95 0.86 0.97 0.66 0.98 0.64

SS+IPCA 0.95 – 0.97 – 0.98 –

Moffett
PCA 0.77 0.59 0.86 0.74 0.87 0.43

SS+PCA 0.75 0.64 0.84 0.67 0.87 0.59
SS+IPCA 0.77 – 0.84 – 0.88 –

eP ∗ is the number of PCs from the linear model of (Du and Fowler 2007); “all” refers to retaining all N = 224 PCs

TABLE IV

PERFORMANCE FOR BAD-BAND REMOVAL FOR PCA+JPEG2000

0.05 bpppb 0.1 bpppb 0.25 bpppb 0.5 bpppb

bands coded 224 195 224 195 224 195 224 195

Cuprite
MSE 320.12 312.85 107.70 104.52 56.33 52.99 32.09 32.25

ρ 0.69 0.69 0.65 0.64 0.69 0.69 0.65 0.65

Jasper MSE 1996.74 1966.86 285.11 328.58 69.96 69.20 32.90 33.33
Ridge ρ 0.88 0.86 0.95 0.94 0.91 0.89 0.90 0.90

Moffett
MSE 2375.07 2331.31 314.62 359.77 77.96 75.50 37.64 37.65

ρ 0.59 0.66 0.74 0.76 0.43 0.44 0.77 0.83
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