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Abstract

A number of techniques for the compressed sensing of imagery are sur-
veyed. Various imaging media are considered, including still images,
motion video, as well as multiview image sets and multiview video.
A particular emphasis is placed on block-based compressed sensing
due to its advantages in terms of both lightweight reconstruction
complexity as well as a reduced memory burden for the random-
projection measurement operator. For multiple-image scenarios, includ-
ing video and multiview imagery, motion and disparity compensation is
employed to exploit frame-to-frame redundancies due to object motion
and parallax, resulting in residual frames which are more compressible



and thus more easily reconstructed from compressed-sensing measure-
ments. Extensive experimental comparisons evaluate various prominent
reconstruction algorithms for still-image, motion-video, and multiview
scenarios in terms of both reconstruction quality as well as computa-
tional complexity.
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1
Introduction

The sampling theorem is arguably the best known component of the
theoretical foundations of the signal-processing and communications
fields; its importance is paramount in that it underlies all modern
signal-acquisition, sampling, sensing, and analog-to-digital conversion
devices. Although introduced to the signal-processing and communi-
cations communities by Shannon in 1949 [109], the sampling theorem
can be traced to earlier work by telegraphers and mathematicians (see,
e.g., [82]). In essence, the sampling theorem states that, if a signal con-
tains no frequencies higher than bandlimit W , then it can be perfectly
reconstructed from samples acquired at a rate of at least 2W . This
latter quantity, commonly known as the Nyquist rate, thus represents
the slowest rate at which sampling of any bandlimited signal can be
acquired and still permit perfect reconstruction.

However, this traditional sampling theory is founded on relatively
minimal prior knowledge on the signal being sampled — i.e., its band-
limit W . While traditional sampling theory has the advantage of apply-
ing to any signal satisfying this bandlimit constraint, we are commonly
interested in more restricted classes of signals, i.e., those that are known
to possess much more structure, and thus fewer degrees of freedom,
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than dictated by the signal bandlimit [8]. A well-known example is
that of bandpass signals in which the signal is present over only a lim-
ited band of frequencies — under such bandpass structure, bandpass
sampling (e.g., [129]) can acquire the signal with a sampling rate slower
than 2W . More recent literature has witnessed an explosion of interest
in sensing that exploits structured prior knowledge in the general form
of sparsity, meaning that signals can be represented by only a few coef-
ficients in some transform basis. Like bandpass sampling, exploitation
of such sparse structure within signals can effectively permit sampling
at rates well below 2W .

Central to much of this recent work is the paradigm of compressed
sensing (CS)1 (e.g., [18, 22, 38]) which permits relatively few mea-
surements of the signal to be acquired in a linear fashion while still
permitting exact reconstruction via a relatively complex and nonlinear
recovery process. While much CS literature is rather generic in that it
is not tied to any specific class of signal beyond a general assumption
of sparsity, there has been significant interest in CS specifically tailored
to imaging applications. Indeed, recent work in the CS field has seen
proposals for not only sensor devices but also reconstruction algorithms
designed specifically for a variety of imagery signals.

The goal of this monograph is to overview some of these meth-
ods. A primary focus is an examination of the state of the art in CS
reconstruction for various imaging modalities, including still images,
motion video, and multiview imagery. Throughout, we focus on photo-
graphic imagery which is acquired in the spatial domain of the image,
a paradigm which is ubiquitous throughout image-processing applica-
tions. This stands in contrast to a significant portion of existing CS
literature that has targeted, with substantial success, specific medical-
imaging applications — in particular, magnetic resonance imaging
(MRI), which is acquired directly in a Fourier-transform space. The
potential for CS to significantly expedite MRI acquisition is rela-
tively well established and already well covered tutorially in the liter-
ature (e.g., [83, 84]). On the other hand, CS for photographic imagery

1 Also known as compressive sampling or compressive sensing.
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acquired in the spatial domain is a comparatively emerging area and,
thus, the topic of the present monograph.

An additional focus of this monograph is on CS reconstruction
as applied on image blocks. In such block-based compressed sensing
(BCS), an image is partitioned into small non-overlapping blocks which
are acquired independently but reconstructed jointly. BCS is motivated
primarily for reasons of reduced computational complexity and mem-
ory burdens. These can become impractically large for the CS of images
and video as a result of the increased dimensionality (i.e., 2D and 3D)
of such signals.

We note also that our discussion is not intended to serve as an in-
depth tutorial on the theory or mathematics of CS; rather, there exist
several excellent overviews on this subject (e.g., [7, 20, 22]). Instead,
our coverage of CS theory here will be brief, while the specifics of the
application of BCS to natural imagery will consume the bulk of the
discussion.

The remainder of the monograph is organized as follows. Section 2
briefly overviews CS theory, including acquisition and reconstruction
processes. Section 3 then considers the CS of a single still image, focus-
ing on a variety of techniques to reconstruct such images from ran-
dom CS measurements. Section 4 extends these concepts to the CS of
video with an emphasis on reconstruction from motion-compensated
residuals, and then Section 5 adds multihypothesis prediction to such
motion-based CS reconstruction. Section 6 finally considers the CS of
multiview images and video in which a scene is imaged from several
viewpoints simultaneously. We end the monograph by making several
concluding remarks.



2
Compressed Sensing

2.1 An Overview of CS Theory

In brief, compressed sensing (CS) [18, 22, 38] is an emerging mathemati-
cal paradigm which permits, under certain conditions, linear projection
of a signal into a dimension much lower than that of the original signal
while allowing exact recovery of the signal from the projections. More
specifically, suppose that we want to recover real-valued signal x with
length N from M measurements such that M � N . In other words, we
want to recover x ∈ �N from

y = Φx, (2.1)

where y has length M , and Φ is an M × N measurement matrix with
subsampling rate, or subrate, being S = M/N . Because the number of
unknowns is much larger than the number of observations, recovering
every x ∈ �N from its corresponding y ∈ �M is impossible in general;
however, if x is known to be sufficiently sparse in some domain, then
exact recovery of x is possible — this is the fundamental tenet of CS
theory.

In CS, sparsity is the key aspect that enables recovery of x from y.
Such sparsity can be with respect to some transform Ψ such that, when
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the transform is applied to x, i.e.,

x̌ = Ψx, (2.2)

only K coefficients in the set of transform coefficients x̌ are nonzero.
We say then that x is K-sparse and that Ψ is the sparsity basis for x.

We note that real-world signals — particularly the images and the
video that we focus on in this text — are rarely, if ever, truly sparse in
any basis. Rather, such real-world signals are often only compressible
in the sense that, if x̌n are the coefficients of x̌ = Ψx sorted in order of
decreasing magnitude such that

|x̌n| ≥ |x̌n+1|, (2.3)

then

|x̌n| < Rn−r, (2.4)

where r ≥ 1 and R <∞ (see, e.g., [10, 17, 18, 20]). Define x̌K as the
set of partial coefficients derived from x̌ by keeping the K largest coef-
ficients and setting the rest to zero, and xK = Ψ−1x̌K . Then, if x is
compressible in the sense of (2.4), xK is close to x in the sense of

‖x − xK‖2 ≤ CrRK−r, (2.5)

where Cr is a constant depending only on r [18]. When the coefficient
magnitudes have a power-law decay as in (2.4), CS theory holds that the
resulting compressible x can be recovered approximately from y = Φx.
Specifically, the recovered signal, x̂, will be close to xK in the sense of

‖x̂ − x‖2 ≤ C
‖x − xK‖1√

K
(2.6)

for some well-behaved constant C (see, e.g, [17, 20]).
In the case of such approximate recovery of compressible signals,

the subrate S = M/N plays the crucial role in determining the quality
of the reconstruction — a larger subrate will enable a sparse approx-
imation containing more nonzero coefficients to be recovered, leading
to a reconstruction that is closer to the original signal. As a conse-
quence, in experimental results to come later, we will evaluate perfor-
mance of image- and video-reconstruction strategies by examining an
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image-distortion measure over a range of subrate values, noting that
perfect, distortionless, recovery is achieved for such compressible signals
only when S = 1.

2.2 Approaches to CS-Based Signal Acquisition

In the CS framework, the signal-acquisition or sensing device acquires
neither x nor its coefficients x̌ directly. Instead, the sensing device mea-
sures linear projections of x onto the measurement basis Φ, thereby
acquiring the signal directly in a reduced dimensionality. This CS mea-
surement process is represented mathematically as (2.1).

The trick behind CS is, of course, to do this dimensionality-reducing
signal acquisition in a reversible manner, and this imposes conditions
on the measurement and sparsity bases. Specifically, CS theory dictates
that it is sufficient that the sparsity basis and the measurement basis be
mutually incoherent in the sense that the measurement basis Φ cannot
sparsely represent the columns of the sparsity basis Ψ. The usual choice
for the measurement basis Φ is a random matrix, since it can be shown
that a random basis will be incoherent with any sparsity basis with very
high probability. In this sense, a random measurement basis works uni-
versally well for any signal regardless of the domain in which its spar-
sity exists. Random matrices that exhibit such incoherence with any
sparsity basis include matrices populated with independent and iden-
tically distributed Gaussian or ±1 Rademacher1 random variables [6].
An orthonormalized random matrix (formed by, e.g., orthonormalizing
the rows of the above Gaussian matrix) also provides incoherence [22].

We observe that the most straightforward approach to representing
the measurement matrix Φ is simply an M × N dense array of val-
ues (e.g., floating point for Gaussian matrices, binary for Rademacher
matrices); in fact, Φ has been implemented this way in many applica-
tions and in much of the CS literature. However, if the dimensionality
of x is large (as is often the case when multidimensional signals like
images and video are considered), the memory required to store Φ
in both the sensing and reconstruction devices may be impractically

1 A Rademacher distribution assigns probability 1
2 to the values ±1.
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large; additionally, a large Φ may result in a huge computation burden
for the reconstruction process which typically involves a large number
of multiplications with Φ. However, the use of a structurally random
matrix (SRM) (e.g., [36, 54]) can significantly mitigate these issues. In
essence, an SRM provides a signal-sensing process (operator Φ) con-
sisting of a random permutation, a simple and computationally efficient
transform (such as a block cosine or Hadamard transform), and a ran-
dom subsampling process. Each of these components can be generated
procedurally without requiring the storage of a large, dense matrix;
additionally, an SRM can be applied to the input signal with little
computation or memory. As a consequence, many CS-reconstruction
implementations use SRMs in practice, and it is largely anticipated
that large-dimensional CS signal-acquisition devices will as well.

Finally, we argue that CS makes the most sense in situations in
which the acquisition of each measurement (i.e., each component of
vector y in (2.1)) comes with some substantial associated cost. For
example, in medical applications, each measurement may represent the
exposure of the patient to a certain amount of radiation — clearly,
signal-acquisition schemes that minimize the total radiation exposure
are desirable. On the other hand, in many imaging applications, such
as those we consider later, each measurement may represent a discrete
sensing element — the fewer the elements used, the lower the overall
device cost, particularly for wavelengths outside of the visible spectrum
for which a single sensor element may be so costly such that a full array
of millions of sensors may be prohibitively expensive.

Under this “measurements-are-costly” paradigm, the potential
advantages of CS arise from a signal-sensing process in which x is
acquired and simultaneously reduced in dimension in the form of y
directly within the hardware of the sensing device. In this case, the
matrix-vector multiplication of the measurement process, Φx, is per-
formed implicitly within the sensor rather than calculated explicitly. In
this sense, CS-based signal acquisition offers computation-free dimen-
sionality reduction at the sensor side of the system. In such a sens-
ing device, the full-dimensional signal x does not exist at any point
within the sensor, having never been sensed or acquired in its full
dimensionality.
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2.3 Approaches to CS Reconstruction

Given CS measurements y produced via (2.1) with measurement
matrix Φ, the CS reconstruction problem is to find x̂ such that y = Φx̂
(either exactly or approximately) and such that the coefficients x̌ = Ψx̂
are sparse with respect to sparsity basis Ψ. The most straightforward
formulation of the reconstruction problem searches for the x̌ with the
smallest �0 norm2 consistent with the observed y; i.e.,

min
x̌
‖x̌‖0, such that y = ΦΨ−1x̌, (2.7)

where Ψ−1 is the inverse sparsity transform. For the x̌ solving (2.7),
the final reconstruction is then

x̂ = Ψ−1x̌. (2.8)

However, this �0 optimization is NP-hard (e.g., [21]) and thus compu-
tationally infeasible for all but the smallest of problems. As a conse-
quence, there have been a large number of alternative optimizations
proposed in recent literature. Perhaps the most prominent of these is
basis pursuit (BP) [25] which applies a convex relaxation to the �0

problem resulting in an �1 optimization,

min
x̌
‖x̌‖1, such that y = ΦΨ−1x̌. (2.9)

Often, it is assumed that the CS measurements are acquired with some
noise; i.e., (2.1) becomes

y = Φx + n, (2.10)

where n is some vector of noise. In this case, one can relax the equality
constraint in the �1 formulation of (2.9) to yield3

min
x̌
‖x̌‖1, such that ‖y − ΦΨ−1x̌‖22 ≤ ε (2.11)

2 The �0 “norm,” ‖x̌‖0, is not truly a norm but is a pseudonorm; it is merely the number
of nonzero coefficients in x̌.

3 The well-known least absolute shrinkage and selection operator (LASSO) [116] has a form
similar to (2.11) with the �2 term as the minimization objective and �1 term as the
constraint.
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for some tolerance ε > 0. This constrained optimization is closely
related to the unconstrained Lagrangian formulation,

min
x̌
‖x̌‖1 + λ‖y − ΦΨ−1x̌‖22, (2.12)

known as basis-pursuit denoising (BPDN) [25], wherein the Lagrangian
multiplier λ balances the �1-driven sparsity against the �2-based mea-
sure of distortion.

A variety of strategies have been proposed to solve the (2.9), (2.11),
and (2.12) optimizations; see [124] for a survey. BP (2.9) and BPDN
(2.12) can be solved effectively with linear and second-order-cone
programs, respectively; the well-known �1-magic4 software package
takes this approach, for example. However, such convex-programming
methods have computational complexity that is often large for higher-
dimensional signals such as images and video. As an alternative,
gradient-descent methods solve BPDN (2.12) and tend to be faster
in practice than corresponding interior-point solutions. Gradient-based
algorithms include iterative splitting and thresholding (IST) [31], sparse
reconstruction via separable approximation (SpaRSA) [135], and gra-
dient projection for sparse reconstruction (GPSR) [47].

A number of greedy algorithms have also been proposed for the
CS reconstruction problem. These include matching pursuits [87],
orthogonal matching pursuits (OMP) [123], and compressive sam-
pling matching pursuit (CoSaMP) [91]. In practice, such greedy algo-
rithms significantly reduce computational complexity as compared to
convex-programming approaches, albeit typically at the cost of lower
reconstruction quality [124].

Iterative thresholding (e.g., [14, 15, 31, 62]) is a body of algorithms
which serves as an alternative to the greedy pursuits class of CS recon-
struction. Iterative-thresholding algorithms form x̌ by successively pro-
jecting and thresholding; for example, the reconstruction in [62] starts
from some initial approximation x̌(0) and forms the approximation at

4 http://www.l1-magic.org.
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iteration i + 1 as

ˇ̌x(i) = x̌(i) +
1
γ
ΨΦT(y − ΦΨ−1x̌(i)), (2.13)

x̌(i+1) =

{
ˇ̌x(i), |ˇ̌x(i)| ≥ τ (i),

0, else.
(2.14)

Here, γ is a scaling factor, while τ (i) is a threshold set appropriately
at each iteration. For γ, [62] proposes the largest eigenvalue of ΦTΦ;
in this case, if Φ is an orthonormal matrix, ΦTΦ = I, and γ = 1. It
is straightforward to see that this procedure is a specific instance of
a projected Landweber (PL) algorithm [79, 12]; similar approaches
for CS reconstruction include [14, 15]. Like the greedy algorithms of
the pursuits class, PL-based CS reconstruction also provides reduced
computational complexity as compared to convex-programming-based
reconstruction. Additionally, the PL formulation offers the possibility of
easily incorporating additional optimization criteria. For example, later
in this monograph, we will overview an image-reconstruction technique
that incorporates Wiener filtering into the PL iteration to search for a
CS reconstruction simultaneously achieving sparsity and smoothness.

2.4 CS versus Source Coding

In the field of information theory as established by Shannon [108, 110],
source coding can be considered to be “the conversion of arbitrary sig-
nals into an efficient digital representation” [55]; this digital represen-
tation is often called a bitstream. Since, in most cases, it is desired that
the resulting bitstream use as few bits as possible, source coding has
often been referred to as data compression. The performance of such
data compression is measured in terms of a bitrate — i.e., the number
of bits contained in the bitstream per original source sample. The com-
pression may result in an exact representation of the original source,
in which case the compression is lossless; otherwise, it is lossy. In the
case of lossy compression, performance is also measured in terms of
the quality of the representation using some fidelity measure, typically
called the distortion. Thus, in information theory, the rate-distortion
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performance characterizes the compression in the form of a tradeoff
between bitrate and distortion.

It is important to note that CS does not necessarily imply com-
pression in the information-theoretic, rate-distortion sense. That is,
the expression “compressed” in the CS name more correctly refers to
a process of dimensionality reduction rather than “compression” in
the form of source coding as this term is commonly construed in the
information-theory community. Similarly, “compressibility” in the CS
domain is strictly in the sense of (2.4), and we emphasize that our
use of this term in the remainder of our discussion will be specifically
limited to this context.



3
Block-Based Compressed Sensing

for Still Images

3.1 CS Acquisition of Still Images

There has been significant interest in compressed sensing (CS) in
systems that acquire and process 2D still images. Widespread use of
digital cameras has led to increasing demands for higher spatial res-
olution, lower power consumption, and lower overall device costs. In
many existing digital cameras, images are acquired with several million
sensor elements. CS offers a compelling alternative to this traditional
image-acquisition paradigm — instead of sampling in high resolution,
CS offers the possibility of directly acquiring the image in a reduced
dimensionality. With this dimensionality reduction taking place implic-
itly within the hardware of the sensing device, it is speculated that CS
may eventually yield camera architectures that are significantly cheaper
and that consume less power, both as a result of using a number of dis-
crete sensing elements that is greatly reduced as compared to the full
sensor array. Such cameras may then be able to accommodate spec-
tral wavelengths (e.g., infrared) for which a single sensing element is
so costly that a multi-mega-sensor array is prohibitive. Cameras might
also be tailored to wavelengths impossible to implement in conventional
CCD and CMOS imagers [115].

314
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3.1.1 The Single-Pixel Camera

Perhaps the most well-known architecture for the CS acquisition of
still images is the so-called “single-pixel camera” [42, 115, 131, 132]
developed at Rice University. This camera architecture is illustrated in
Figure 3.1. In short, the single-pixel camera uses a digital micromirror
device (DMD) to optically perform inner products in the CS measure-
ment process.

Specifically, the DMD — normally an output device used in digital-
light-processing (DLP) applications — forms a pixel array of electro-
statically actuated mirrors that can each be oriented in one of two
states (+12◦ or −12◦ from horizontal). When coupled with an analog
photosensor, the DMD is used as an image sensor such that the image
in question is focused onto the DMD and partially reflected toward the
photosensor. By orienting the photosensor such that one of the DMD
mirror states reflect light toward the photosensor while the other mirror
state reflects away, the DMD, in effect, forms an inner product between
the image being acquired and the binary pattern present on the DMD

Fig. 3.1 The single-pixel camera from [115, 131, 132, 42] for the CS acquisition of a still
image.
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array. That is, the photosensor senses the analog sum of all the light
reflected to it from the DMD, thereby outputting a continuous-valued
analog measurement for each pattern on the DMD.

The resulting analog voltage reading of the photosensor provides a
single (scalar) CS measurement value, ym ∈ �. By repeating this pro-
cess M times with multiple pseudorandom DMD patterns, a vector,
y =

[
y1 · · · yM

] ∈ �M , of M CS measurements is acquired. It is
straightforward for the binary DMD patterns to effectuate a pseudo-
random Rademacher ±1 measurement basis by taking an additional
measurement with all the mirrors reflecting toward the sensor and then
subtracting this mean measurement, ȳ, from the other measurements:

2y − ȳ · 1→ y, (3.1)

where 1 is an M × 1 vector of all ones [42, 115]. Alternatively, by appro-
priately duty-cycling the mirrors, a Gaussian measurement matrix can
be obtained [42, 115]. As mentioned previously, such Rademacher and
Gaussian measurement bases are incoherent with any sparsity basis
with high probability.

Sampling in the single-pixel camera may also be driven by a struc-
turally random matrix (SRM) employing a block Hadamard transform
as suggested in [54]. In this latter case, the DMD mirror patterns do
not need to be explicitly stored in the sensing device; rather, they are
generated procedurally “on the fly” as needed by the measurement pro-
cess, thereby significantly reducing memory requirements on-board the
sensing device as compared to dense Rademacher or Gaussian matrices,
particularly when the image size is large.

The CS-based single-pixel camera has the potential to provide sub-
stantial benefits for hardware-constrained systems but does come at a
cost when compared with traditional systems: acquisition time. A CS
device requires less memory to store sampled signals and less power to
transmit them, as well no computation required to calculate the dimen-
sionality reduction (which is, in effect, accomplished optically), but the
total time to acquire a given signal is increased by a factor of M —
more, if duty cycling for a Gaussian matrix is needed (note, however,
that such duty cycling is not required for a Hadamard-based SRM as
in [54]). For the imaging of static scenes, this trade off is nominal, and
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the ability to use a single sensor instead of an entire array of sensors
might outweigh the cost of the additional exposure time required for
each measurement. For dynamic scenes, CS sampling is more compli-
cated, and we will return to the issue of CS sampling for video later.

We note also that the single-pixel-camera architecture is perhaps
best suited to applications at wavelengths outside of the visible spec-
trum. Indeed, current CCD and CMOS imagers already in widespread
use in digital cameras provide a full array consisting of many millions
of sensor elements in the visible spectrum — since such CCD/CMOS
devices are extremely cheap, fast, low-powered, and high-quality, it
may be difficult to justify the use of a single-pixel camera in visible-light
applications. In contrast, however, sensors for extra-visible wavelengths
typically entail significantly higher cost — for example, current infrared
cameras are at least a thousand-fold more expensive than visible-light
cameras at a comparable spatial resolution. On the other hand, the
single-pixel camera, which requires only a single sensing element, may
have the potential to significantly reduce the hardware costs of image
acquisition in infrared and other extra-visible applications.

3.1.2 Quantization

We note that, in our discussion, and as is typical to CS literature, the
image-acquisition device (exemplified here by the single-pixel camera of
Figure 3.1), is assumed to be implemented entirely in analog hardware.
As a consequence, the measurements acquired are considered to be real-
valued; i.e., y ∈ �M . Yet, the reconstruction procedures to follow are
necessarily implemented within digital computers. As a consequence,
some form of analog-to-digital conversion is implicit between the image-
acquisition and image-reconstruction processes. However, the issue of
incorporating quantization into the CS paradigm is largely underdevel-
oped in CS literature to date.

It is tempting to apply a scalar quantizer to the individual com-
ponents of the measurement vector y and concatenate the resulting
quantizer indices into a bitstream. However, it is well-known (e.g.,
[48, 58]) that such a process yields abysmally poor performance (in an
information-theoretic rate-distortion sense) as compared to traditional
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lossy source-coding algorithms (e.g., JPEG [66] and JPEG-2000 [69]
for images). Several ameliorations (e.g., [28, 70, 133]) have been pro-
posed in recent literature to improve the performance of quantized CS
beyond that of straightforward reconstruction from scalar-quantized
measurements. Still, these techniques yield rate-distortion performance
well below that of existing source-coding algorithms.

As a consequence of the incipient nature of the coupling of quantiza-
tion and CS, we do not consider the issue of quantization further in our
discussion, treating both the original signal as well as its CS measure-
ments conceptually as real-valued, with corresponding experimental
implementation in floating-point arithmetic. It is anticipated that, as
strategies for incorporating quantization into CS become more mature,
adaptation of the algorithms discussed in the following to quantized
measurements will be straightforwardly accomplished. Such is the case,
for example, of the progressive-quantization methodology proposed in
[133] which is employable with any image-reconstruction algorithm.

3.1.3 Other Image-Acquisition Architectures

In addition to the single-pixel camera, several other architectures for
the CS acquisition of still imagery have been proposed; an overview of
some of these devices is presented in [43]. These alternative architec-
tures include devices which couple a sensor array with explicit calcu-
lation of a random projection in analog hardware. For example, [71]
implements random convolution (convolution with a random filter fol-
lowed by downsampling [103]) for CS image acquisition; on the other
hand, [102] performs analog vector–matrix multiplication to effectuate
CS measurements. Both [71] and [102] have the drawback that they
require implementation of a full array of sensing elements (i.e., equal in
number to the pixels in the image) and thus do not reduce the cost asso-
ciated with the number of such sensing elements. Rather, the assump-
tion is that the analog calculation of the dimensionality reduction is
cheaper — in terms of device implementation or power consumption —
than other means for accomplishing the same (e.g., digital calculation
of an image transform). Such an advantage has not yet been clearly
demonstrated for such devices to the best of our knowledge, however.
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Alternatively, [88] proposes CS image acquisition via a coded aper-
ture and a subsampled focal plane. Like the single-pixel camera, a
reduced number of sensing elements is used as compared to the full sen-
sor array, but still significantly more than just a single sensor as in the
single-pixel camera. Like the single-pixel camera, coded-aperture image
acquisition is likely to be most suited to applications residing outside
the visible spectrum since current full-array CCD and CMOS imagers
already provide low-cost image acquisition in the visible spectrum. Yet
extra-visible wavelengths may require significantly more expensive sen-
sor elements and therefore may benefit from the reduced number of
sensor elements required by coded-aperture sensors.

Throughout the remainder of this monograph, we will assume that
the single-pixel-camera architecture of Figure 3.1 is employed for CS
acquisition of a still image, either through the use of a duty-cycled
Gaussian measurement matrix or an SRM-driven sampling process.
The primary concern is then how one reconstructs the image from the
resulting CS measurements; we explore this issue next.

3.2 Straightforward Reconstruction for Images

A straightforward implementation of CS on 2D images recasts the 2D
array-based problem as a 1D vector-based problem, typically using the
following procedure:

(1) “Rasterize” N × N image X into an N2-dimensional vec-
tor x:

x = Raster(X). (3.2)

Here, Raster(·) is a suitable rasterization operator — for
example, the concatenation of the N rows of the image
together, followed by a transpose, to produce an N2 × 1
vector.

(2) Apply M × N2 measurement matrix Φ:

y = Φx. (3.3)

(3) Apply some CS reconstruction algorithm. This vector-based
reconstruction will employ Φ, the measurement matrix, as
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well as Ψ, the sparsity transform. In this context, Ψ is an
N2 × N2 matrix consisting of the N2 basis images of some
2D image transform (discrete cosine transform (DCT), dis-
crete wavelet transform (DWT), etc.), arranged such that
each basis image has been rasterized into an N2 × 1 vector
and placed columnwise into Ψ. The reconstruction yields
x̂ = Ψx̌:

x̂ = CS Reconstruction(y,Φ,Ψ) . (3.4)

(4) Reassemble the image from the vectorized reconstruction:

X̂ = Unraster(x̂) . (3.5)

This rasterized paradigm was used, for example, for reconstruction with
the single-pixel-camera system in [115, 131, 132].

We note that the description here of the sparsity basis Ψ as an
N2 × N2 matrix is largely conceptual. While it would certainly be
possible to represent any 2D image transform such as a DCT or
DWT in this fashion, in practical implementation of CS reconstruc-
tion, one would almost certainly use some fast computation of both
the forward transform Ψx̌ and the inverse transform Ψ−1x within the
CS Reconstruction(·) process. For example, there are a number of fast
algorithms for both the DCT (e.g., [46, 85]) and DWT (e.g., [32, 114]).
Such algorithms typically offer a number of advantages for the calcu-
lation of an image transform as compared to matrix–vector multiplica-
tion, which, although conceptually simple, can entail significantly more
computation and memory than the fast algorithms.

A primary concern with (3.4) is that, when a generic CS recon-
struction is employed, it is somewhat “blind” to the fact that the data
being processed represents an image beyond the fact that the sparsity
transform Ψ is a 2D image transform. That is, generic CS reconstruc-
tion algorithms treat the problem as any other, simply searching for
a sparse solution that is consistent with the observed random mea-
surements. Unfortunately, imposing sparsity alone does not necessarily
produce the most visually pleasing reconstructed images. For example,
[17] found that the sparse solutions produced by a straightforward CS
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reconstruction often incurred visually unpleasant, high-frequency oscil-
lations. In essence, the issue stems from the fact that generic CS recon-
struction ignores attributes known to be widely possessed by images,
such as smoothness. We will examine strategies for incorporating such
image attributes into CS reconstruction below.

Another concern is that, from the perspective of practical imple-
mentation, the fact that the size of Φ is O(N4) entails that the mem-
ory required to store this matrix grows very fast as the number of
pixels in the image in question increase. This leads to a huge memory
required to store the measurement operator when Φ is implemented
as a dense matrix (e.g., Gaussian or Rademacher) within the CS sens-
ing process. Additionally, a large Φ yields a huge memory and com-
putational burden within the CS reconstruction process as well, since
CS reconstruction involves numerous matrix computations with Φ. As
a consequence of these difficulties in both memory and computation,
many instances of image CS in prior literature consider images no larger
than 256 × 256 pixels, and some focus on even smaller sizes. As men-
tioned previously, SRMs (e.g., [36, 54]) can effectively reduce these
computation and memory burdens by using a procedurally-generated
measurement operator in both the sensing and reconstruction pro-
cesses. However, an alternative to SRMs is to impose some form of
sparse structure (e.g., block diagonality) onto Φ, a possibility that we
explore in detail below.

We now consider several strategies that attempt to ameliorate the
difficulties identified above. Specifically, we first consider a reconstruc-
tion based on total variation that capitalizes on the fact that the
underlying data to be reconstructed represents a natural 2D image.
A primary focus of this effort is the promotion of smoothness of the
end reconstruction. We then consider CS based on image blocks that
effectively focuses on both smoothness of reconstruction as well as fast
and memory-efficient implementation of the measurement operator.

3.3 Total-Variation Reconstruction

In [17], basis-pursuit denoising (BPDN) as given in (2.12) is recast
in order to promote smoothness in the reconstructed images and to
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suppress the high-frequency artifacts encountered with the straight-
forward solution to (2.12). Specifically, it is proposed that, instead of
seeking sparsity in the domain of some image transform, (2.12) is refor-
mulated as

min
X
‖X‖TV + λ‖y − Φx‖2, (3.6)

where x is the 1D rasterization of image X. Here, the total variation
(TV) of the image is

‖X‖TV =
∑
i,j

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2, (3.7)

where xi,j is the pixel in location (i, j) in the image X. In [17], (3.6)
is solved using a second-order-cone program that accommodates the
TV-based norm.

In essence, the TV approach to CS reconstruction replaces sparsity
in the domain of an image transform with sparsity in the domain of a
discretized gradient, implicitly promoting smoothness in the resulting
reconstruction. As a result, TV-based reconstruction ameliorates the
problem associated with generic CS recovery of image data in that the
reconstruction is no longer blind to the fact that the underlying signal is
an image. Although the use of SRMs [36, 54] can greatly improve mat-
ters, TV reconstruction still tends to be very computationally complex
as compared to other reconstruction algorithms. As a consequence, TV-
based CS reconstruction of an image tends to be rather slow, perhaps
even to the point of being infeasible if the image size is large.

3.4 CS with Blocks in the Spatial Domain

As an alternative to SRMs for alleviating the huge computation and
memory burdens associated with a dense measurement matrix Φ within
both the sensing and reconstruction processes, one can adopt a philos-
ophy long used in image-processing fields when an image is too large to
be feasibly processed in its entirety — specifically, break the image into
smaller blocks and process the blocks independently. Such an approach
was proposed in [53] for block-based compressed sensing (BCS) for 2D
images.
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In BCS, an image is divided into B × B non-overlapping blocks and
acquired using an appropriately sized measurement matrix. That is,
suppose that xj is a vector representing, in raster-scan fashion, block j

of input image X. The corresponding yj is then

yj = ΦBxj , (3.8)

where ΦB is an MB × B2 measurement matrix such that the target
subrate for the image as a whole is S = MB/B2. It is straightforward
to see that (3.8) applied block-by-block to an image is equivalent to a
whole-image measurement matrix Φ in (3.3) with a constrained struc-
ture; specifically, Φ is block diagonal,

Φ =



ΦB 0 · · · 0
0 ΦB · · · 0
...

. . .
...

0 · · · 0 ΦB


 . (3.9)

We note that the single-pixel camera discussed above can easily accom-
modate BCS acquisition by simply driving the DMD array with this
block-diagonal Φ instead of a dense Φ as was done originally in
[42, 115, 131, 132].

There are several approaches that one can take to reconstruct an
image that has been acquired using BCS. The most straightforward sit-
uation is when the sparsity transform Ψ is also a block-based operator
of the same B × B size, i.e.,

Ψ =



ΨB 0 · · · 0
0 ΨB · · · 0
...

. . .
...

0 · · · 0 ΨB


 , (3.10)

where ΨB is a B2 × B2 matrix for the block-based transform. In this
case, (3.4) can simply be applied for each block independently; i.e., for
block j,

x̂j = CS Reconstruction(yj ,ΦB,ΨB). (3.11)

We refer to this independent, block-by-block reconstruction as a
“block-independent” reconstruction. In general, block-independent
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reconstruction will produce severe blocking artifacts and is thus not
usually a reasonable solution.

Better results may arise when the block measurement matrix ΦB is
placed into the block-diagonal Φ as in (3.9) with Φ then being used in
the whole-image reconstruction of (3.4). We refer to this as “block-
diagonal” reconstruction. Block-diagonal reconstruction permits the
sparsity achieved in the reconstructed signal to be adjusted across all
blocks simultaneously (in the block-independent solution, sparsity is
imposed on each block independently). In this case, the sparsity trans-
form Ψ can take the form of a full-image transform (such as a DWT)
rather than being constrained to have a block-diagonal structure as is
the case for block-independent reconstruction. Such a full-image trans-
form will serve to ameliorate the blocking artifacts that naturally arise
in BCS due to the block-diagonal structure of Φ. More importantly,
since block-based transforms do not decorrelate across image blocks,
the compressibility of the image in the sense of (2.4) is likely to be much
greater in the domain of a full-image transform such as a DWT, achiev-
ing a much higher-fidelity reconstruction than the block-independent
approach.

An alternative is to eliminate the sparsity transform Ψ altogether
and opt instead to impose a sparse gradient, i.e., by adopting a TV-
based reconstruction. In such a TV-based solution, we apply (3.6) using
the block-diagonal Φ of (3.9). We refer to this combination of BCS and
TV-based reconstruction as “BCS-TV.”

In experimental results to follow, we will evaluate the performance
of each of these strategies and give examples of the visual quality of
reconstructed images. First, however, we overview an alternative to
BCS-TV that combines BCS acquisition, fast iterative reconstruction,
and explicit smoothing in the form of Wiener filtering with the goal
of producing high-quality, visual-pleasing reconstructions like BCS-TV
without its heavy computational burden.

3.4.1 The BCS-SPL Algorithm

In [53], BCS was proposed wherein the acquisition of an image is
driven by random matrices applied on a block-by-block basis, while the
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reconstruction is a variant of the projected Landweber (PL) reconstruc-
tion of (2.13)–(2.14) that incorporates a smoothing operation intended
to reduce blocking artifacts. Since it combines BCS with a smoothed
projected Landweber (SPL) reconstruction, in [89], the overall tech-
nique was called BCS-SPL.

In BCS-SPL, Wiener filtering is incorporated into the basic PL
framework in order to remove blocking artifacts. In essence, this opera-
tion imposes smoothness in addition to the sparsity inherent to PL.
Specifically, a Wiener-filtering step is interleaved with the PL pro-
jection of (2.13)–(2.14). The specific implementation we use here was
initially described in [89] and is presented in Figure 3.2.

Fig. 3.2 BCS-SPL reconstruction of a 2D image; Wiener(·) is pixel-wise adaptive Wiener
filtering using a neighborhood of 3 × 3, while Threshold(·) is a thresholding process. ΦB is
assumed to be a random orthonormal matrix such that γ in (2.13) is unity (from [89]).
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In [89], to set a proper τ for hard thresholding in BCS-SPL(·),
we employ the so-called interference heuristic [86] which effectively
assumes Gaussian marginal statistics for the insignificant transform
coefficients (i.e., those coefficients that are zero in a sparse approxi-
mation to the original image). Then, the universal threshold of [37] is
used. Specifically, in (2.14),

τ (i) = λσ(i)
√

2logK, (3.12)

where λ is a constant control factor to manage convergence, and K is
the number of the transform coefficients. As in [37], σ(i) is estimated
using a robust median estimator,

σ(i) =
median(|ˇ̌x(i)|)

0.6745
. (3.13)

As a final note, we observe that while (3.12) and (3.13) form a con-
venient heuristic for setting the threshold in the BCS-SPL algorithm,
[39] points to theoretical shortcomings with the underlying Gaussian
assumption in general iterative-thresholding algorithms for CS.

3.4.2 BCS-SPL with Directional Transforms

The BCS-SPL framework of [53, 89] is quite flexible thanks to its rather
simple implementation. It is straightforward to incorporate sophisti-
cated transforms and thresholding, as well as additional constraints
into the process. For example, highly directional transforms with sta-
tistically estimated thresholding was investigated for BCS-SPL in [89].

Although DWTs are widely used in traditional source coding of
images (e.g., the JPEG-2000 standard [69]), DWTs in their traditional
critically-sampled form are known to be somewhat deficient in several
characteristics, lacking such properties as shift invariance and signifi-
cant directional selectivity. As a result, there have been several recent
proposals made for transforms that feature a much higher degree of
directional representation than is obtained with traditional DWTs.
Two prominent families of such directional transforms are contourlets
and complex-valued DWTs. The contourlet transform (CT) [33] pre-
serves interesting features of the traditional DWT, namely multires-
olution and local characteristics of the signal, and, at the expense of
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spatial redundancy, it better represents the directional features of the
image. The CT couples a Laplacian-pyramid decomposition with direc-
tional filterbanks, inheriting the redundancy of the Laplacian pyramid
(i.e., 4/3). Alternatively, complex-valued wavelet transforms have been
proposed to improve upon DWT deficiencies, with the dual-tree discrete
wavelet transform (DDWT) [78] becoming a preferred approach due to
the ease of its implementation. In the DDWT, real-valued wavelet fil-
ters produce the real and imaginary parts of the transform in par-
allel decomposition trees. The DDWT yields a decomposition with
a much higher degree of directionality than that possessed by tradi-
tional DWTs; however, since both trees of the DDWT are themselves
orthonormal or biorthogonal decompositions, the DDWT taken as a
whole is a redundant tight frame. Albeit redundant, both the CT and
DDWT have been effectively used in the source coding of images (e.g.,
[16, 23, 44, 45, 49, 122]); their use in BCS-SPL reconstruction was
demonstrated in [89].

Hard thresholding inherently assumes independence between coef-
ficients. However, bivariate shrinkage [107] is better suited to direc-
tional transforms in that it exploits statistical dependency between
transform coefficients and their respective parent coefficients, yielding
performance superior to that of hard thresholding. In [107], a non-
Gaussian bivariate distribution was proposed for the current coefficient
and its lower-resolution parent coefficient based on an empirical joint
histogram of DWT coefficients. However, it is straightforward to apply
this process to any transform having a multiple-level decomposition,
such as the directional transforms we consider here. Specifically, [89]
proposed that, given a specific transform coefficient ξ and its parent
coefficient ξp in the next coarser scale, the Threshold(·) operator in
SPL be the maximum a posteriori estimator of ξ,

Threshold(ξ,λ) =

(√
ξ2 + ξ2

p − λ
√

3σ(i)

σξ

)
+√

ξ2 + ξ2
p

· ξ, (3.14)

where (g)+ = 0 for g < 0, (g)+ = g else; σ(i) is the median estima-
tor of (3.13); and, again, λ is a convergence-control factor. Here, σ2

ξ

is the marginal variance of coefficient ξ estimated in a local 3 × 3
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neighborhood surrounding ξ as in [107]. We refer the reader to [107]
for full details on the method of bivariate shrinkage and its underlying
statistical models.

3.4.3 Experimental Observations on BCS-Based
Reconstruction

We now present a battery of experimental evaluations to gauge the per-
formance of the block-based still-image reconstruction techniques just
previously discussed. Throughout, we employ several popular grayscale
images1 of size 512 × 512, and we use BCS on blocks of size 32 × 32.
In all cases, the images are subjected to a BCS measurement process
with ΦB in (3.8) being an orthonormalized dense Gaussian matrix. We
measure reconstruction performance in terms of a peak signal-to-noise
ratio (PSNR) between the reconstructed and original images.

We compare several reconstruction techniques as discussed above.
Figures 3.3–3.5 depict typical reconstruction results for the “Lenna”
image using a subrate S = 0.2; these figures show only a detailed
portion from the center of the image. Figure 3.3(a) gives the orig-
inal image, while Figures 3.3(b)–(d) present several straightforward
reconstructions, all based on a generic gradient projection for sparse
reconstruction (GPSR) CS reconstruction algorithm [47]. The first,
in Figure 3.3(b), comes from a block-independent reconstruction
using a block-based DCT as the sparsity transform; in this “block-
independent BCS-GPSR-DCT” reconstruction, each 32 × 32 block is
reconstructed independently via (3.11) with ΨB being the block-based
DCT. Figure 3.3(c) presents a similar reconstruction, only this time,
the reconstruction is block-diagonal. That is, “block-diagonal BCS-
GPSR-DCT” instead performs whole-image reconstruction via (3.4)
using the corresponding block-diagonal Φ and Ψ, the latter again being
based on the 32 × 32 block DCT. Severe blocking artifacts are readily
apparent in Figures 3.3(b) and (c). This blocking is ameliorated signif-
icantly in Figure 3.3(d) in which a whole-image DWT is used in the
reconstruction via (3.4); i.e., in BCS-GPSR-DWT, Φ still possesses a

1 The images are available within the BCS-SPL package, http://www.ece.mstate.edu/

˜fowler/BCSSPL/.



3.4 CS with Blocks in the Spatial Domain 329

Fig. 3.3 Reconstructions of the 512 × 512 “Lenna” image (shown in detail) for a subrate
of S = 0.2. BCS measurement uses 32 × 32 blocks.

block-diagonal structure, but Ψ does not. We note that PSNR figures
for the three straightforward GPSR-based reconstructions are fairly
similar, being around 26 dB for “Lenna.”

Significantly improved PSNR performance, as well as visual quality,
results when smoothing is included in the reconstruction process. To
wit, Figures 3.4(a)–(c) present example reconstructions for a TV-
based reconstruction as well as two BCS-SPL-based reconstructions.
Specifically, Figure 3.4(a) illustrates the performance of BCS-TV
wherein the TV reconstruction of (3.6) is applied to BCS-acquired
imagery, promoting a sparse image gradient and thereby an implicitly
smooth reconstruction. We note that we use �1-magic2 in the BCS-TV

2 http://www.l1-magic.org.
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Fig. 3.4 Reconstructions of the 512 × 512 “Lenna” image (shown in detail) for a subrate
of S = 0.2. BCS measurement uses 32 × 32 blocks.

implementation. On the other hand, Figures 3.4(b) and (c) shows
the reconstruction due to BCS-SPL which features explicit smooth-
ing in the form of a Wiener filter incorporated into the iterative PL
reconstruction process. Shown are results for both a 32 × 32 block
DCT (BCS-SPL-DCT, Figure 3.4(b)) and a full-frame DWT (BCS-
SPL-DWT, Figure 3.4(c)). We use the BCS-SPL implementation avail-
able from the BCS-SPL website.3 The results of the smoothing-based
reconstructions of Figures 3.4(a)–(c) are similar, with PSNRs around
30.5 dB, some 4 dB higher than the straightforward GPSR-based recon-
structions of Figures 3.3(b)–(d).

Figures 3.5(a) and (b) evaluate directional transforms for CS recon-
struction, deploying both the CT and DDWT within the BCS-SPL

3 http://www.ece.mstate.edu/˜fowler/BCSSPL/.
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Fig. 3.5 Reconstructions of the 512 × 512 “Lenna” image (shown in detail) for a subrate
of S = 0.2. BCS measurement uses 32 × 32 blocks.

framework. We refer to the resulting implementations as BCS-SPL-
CT and BCS-SPL-DDWT, respectively. The results for the directional
transforms are similar, with PSNRs around 31 dB being about 0.5 dB
higher than the reconstructions of Figure 3.4.

We note that, in these results, we use bivariate shrinkage (3.14) with
λ = 10, 25, and 25, respectively, for BCS-SPL-CT, BCS-SPL-DDWT,
and BCS-SPL-DWT. Lacking parent–child relations, BCS-SPL-DCT
uses hard thresholding (3.12) with λ = 6.

Table 3.1 compares PSNR for several 512 × 512 images at several
subrates. We note that, since the quality of reconstruction can vary due
to the randomness of the measurement matrix Φ, all PSNR figures are
averaged over five independent trials. The results indicate that BCS-
SPL with the directional transforms achieves the best performance at
low measurement rates. At higher measurement rates, performance is
more varied — BCS-TV is more competitive; however, the directional
BCS-SPL techniques usually produce PSNR close to that of the TV-
based algorithm.

The experimental results presented here demonstrate that imposing
smoothness to the reconstruction — either implicitly via the gradient-
based TV approach, or explicitly in the form BCS-SPL’s Wiener
filtering — can improve PSNR and visual-quality performance signifi-
cantly. BCS-SPL is advantageous in that its simple formulation based
on Landweber iterations permits it to easily accommodate various
sophistications such as directional transforms and bivariate shrinkage.
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Table 3.1. BCS-based reconstruction performance as measured in PSNR in
dB; figures averaged over five independent trials; images are 512 × 512.

Subrate

Algorithm 0.1 0.2 0.3 0.4 0.5

Lenna
BCS-SPL-DDWT 28.3 31.4 33.5 35.2 36.8
BCS-SPL-CT 28.2 31.0 33.0 34.7 36.3
BCS-SPL-DWT 27.8 30.9 32.9 34.6 36.2
BCS-SPL-DCT 27.7 30.5 32.5 34.2 35.8
BCS-TV 27.9 30.6 32.6 34.3 35.9
BCS-GPSR-DWT 22.7 26.0 28.1 29.9 31.3
Block-diagonal BCS-GPSR-DCT 22.5 25.9 28.1 29.8 31.2
Block-independent BCS-GPSR-DCT 22.6 25.8 28.0 29.8 31.3

Barbara
BCS-SPL-DDWT 22.9 24.3 25.9 27.5 29.1
BCS-SPL-CT 22.8 24.3 25.9 27.5 29.4
BCS-SPL-DWT 22.6 23.9 25.2 26.6 28.1
BCS-SPL-DCT 22.8 24.4 25.9 27.4 29.1
BCS-TV 22.5 23.6 24.6 25.6 26.7
BCS-GPSR-DWT 20.1 22.2 23.6 25.0 26.4
Block-diagonal BCS-GPSR-DCT 20.3 23.4 25.4 27.3 28.8
Block-independent BCS-GPSR-DCT 20.4 23.3 25.5 27.3 28.9

Mandrill
BCS-SPL-DDWT 22.9 24.9 26.7 28.4 30.3
BCS-SPL-CT 22.9 25.0 27.0 28.9 30.9
BCS-SPL-DWT 22.5 24.3 26.0 27.7 29.4
BCS-SPL-DCT 22.3 24.2 25.9 27.8 29.7
BCS-TV 22.3 24.3 26.1 27.8 29.5
BCS-GPSR-DWT 18.6 19.8 20.9 21.9 23.1
Block-diagonal BCS-GPSR-DCT 18.5 19.8 20.9 22.1 23.2
Block-independent BCS-GPSR-DCT 18.5 19.8 20.9 22.1 23.3

Goldhill
BCS-SPL-DDWT 27.0 28.9 30.5 31.8 33.1
BCS-SPL-CT 26.9 29.0 30.5 31.9 33.3
BCS-SPL-DWT 26.7 28.7 30.1 31.5 32.9
BCS-SPL-DCT 26.1 28.3 29.6 31.0 32.6
BCS-TV 26.5 28.9 30.6 32.1 33.6
BCS-GPSR-DWT 23.0 25.4 27.0 28.4 29.6
Block-diagonal BCS-GPSR-DCT 23.1 25.6 27.3 28.6 29.8
Block-independent BCS-GPSR-DCT 22.9 25.5 27.2 28.7 29.9

3.5 CS with Blocks in the Wavelet-Domain

As discussed above, techniques such as TV and BCS-SPL exploit
smoothness that is anticipated to be present in the original image
signal. However, other image characteristics can also be used to tailor
CS reconstruction specifically to image data. For example, a number



3.5 CS with Blocks in the Wavelet-Domain 333

of recent CS strategies (e.g., [61, 63, 64, 77, 105]) are deployed assum-
ing that the image is both acquired and reconstructed in the domain
of a DWT. Such wavelet-domain CS permits known statistical models
(e.g., [63, 64, 77]) for wavelet coefficients to be exploited in reconstruc-
tion. Additionally, the degree of CS subsampling can be adapted to the
wavelet decomposition — often, the baseband is retained in full with
no subsampling (e.g., [61, 105]), while the degree of subsampling is
increased for successively higher-resolution decomposition levels (e.g.,
[105]). The subsampling in this case is often referred to as multiscale
(MS) after [125].

Previously, we considered the block-based CS paradigm primarily
as an alternative to SRMs to mitigate computational burdens by lim-
iting the CS measurement process to relatively small blocks. However,
the drawback of BCS is typically a reduced quality of image recon-
struction due to the fact that CS measurement generally works better
the more global it is. We now consider an amelioration of the recon-
struction quality of BCS while retaining its light computational burden
and extremely fast execution. Specifically, we overview the technique
proposed in [50] for an MS algorithm that deploys BCS-SPL [89] in the
domain of a wavelet transform.

3.5.1 Wavelet-Domain BCS

Ideally, the CS measurement operator should be “global” in the sense
that the entire signal x should contribute to each and every measure-
ment taken in producing y in (2.1). However, a block-diagonal struc-
ture as in (3.9) defeats such maximally holistic measurement. As a
consequence, BCS-based techniques such as BCS-SPL and BCS-TV
can be at a disadvantage in terms of reconstruction quality due to
their reliance on a block-based measurement operator. We now con-
sider a modification to the BCS-SPL algorithm as proposed in [50]; this
variant of BCS-SPL is designed to improve its reconstruction-quality
performance while maintaining its block-based measurement and corre-
sponding fast reconstruction. Specifically, BCS-SPL is deployed within
the wavelet domain of the image x to provide multiscale measurement
and reconstruction.
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The measurement operator Φ for MS-BCS-SPL is split into two
components — a multiscale transform Ω (e.g., a DWT) and a multiscale
block-based measurement process Φ′ such that Φ = Φ′Ω, and (2.1)
becomes

y = Φ′Ωx. (3.15)

Assume that Ω produces L levels of wavelet decomposition; thus, Φ′

consists of L different block-based measurement operators, one for each
level. That is, let the DWT of image x be

x̃ = Ωx. (3.16)

Subband s at level l of x̃ is then divided into Bl × Bl blocks and mea-
sured using an appropriately sized Φl (note that l = L is the highest-
resolution level). That is, suppose x̃l,s,j is a vector representing, in
raster-scan fashion, block j of subband s at level l, with s ∈ {H,V,D},
and 1 ≤ l ≤ L. Then,

yl,s,j = Φlx̃l,s,j . (3.17)

Since the different levels of wavelet decomposition have different
importance to the final image reconstruction quality, we adjust the
measurement process so as to yield a different subrate, Sl, at each
level l. In all cases, we set the subrate of the DWT baseband to full
measurement, i.e., S0 = 1. Then, we let the subrate for level l be

Sl = WlS
′, (3.18)

such that the overall subrate becomes

S =
1
4L

S0 +
L∑

l=1

3
4L−l+1 WlS

′. (3.19)

Given a target subrate S and a set of level weights Wl, one can easily
solve (3.19) for S′, yielding a set of level subrates Sl via (3.18). However,
this process will typically produce one or more Sl > 1. Thus, we modify
the solution to enforce Sl ≤ 1 for all l. Specifically, after finding S′ and
S1 via (3.19) and (3.18), we check if S1 > 1. If so, we set S1 = 1, remove



3.5 CS with Blocks in the Wavelet-Domain 335

Table 3.2. Wavelet-domain BCS subrates Sl at level l for target overall subrate S for a
DWT with L = 3 levels. In all cases, the baseband is given full measurement (S0 = 1.0).

Level subrates, Sl

S S1 S2 S3

0.1 1.0000 0.1600 0.0100
0.2 1.0000 0.5867 0.0367
0.3 1.0000 1.0000 0.0667
0.4 1.0000 1.0000 0.2000
0.5 1.0000 1.0000 0.3333

its corresponding term from the sum in (3.19), and then solve

S =
1
4L

S0 +
3
4L

S1 +
L∑

l=2

3
4L−l+1 WlS

′ (3.20)

for S′, again using (3.18) to redetermine Sl for l = 2, . . . ,L. We repeat
this process as needed to ensure that all Sl ≤ 1.

For the experimental results to follow later, we use level weights,

Wl = 16L−l+1, (3.21)

which we have found to perform well in practice. The resulting level
subrates Sl for various target subrates S for a DWT with L = 3 levels
are shown in Table 3.2.

3.5.2 Wavelet-Domain MS-BCS-SPL

The BCS-SPL reconstruction algorithm couples a full-image Wiener-
filter smoothing process with a sparsity-enhancing thresholding process
in the domain of some full-image sparsity transform Ψ. Interleaved
between the smoothing and thresholding operations lie Landweber
steps in the form of

x← x + ΦT(y − Φx), (3.22)

where Φ is a measurement matrix. Figure 3.6 illustrates how the
BCS-SPL reconstruction of Figure 3.2 is modified to accommodate
the situation in which CS measurement takes place within a multi-
scale transform Ω as in (3.15). In essence, the resulting MS-BCS-
SPL reconstruction applies a Landweber step on each block of each
subband in each decomposition level separately using the appropriate
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Fig. 3.6 MS-BCS-SPL reconstruction of a 2D image; Wiener(·) is pixel-wise adaptive
Wiener filtering using a neighborhood of 3 × 3, while Threshold(·) is a thresholding process
(from [50]).

block-based Φl for the current level l. As in the original BCS-SPL,
Wiener filtering takes place in the spatial domain of the image, while
some thresholding operator is applied in the domain of full-frame spar-
sity transform Ψ to promote sparsity.

3.6 Other Approaches to CS Reconstruction of Images

After having considered block-based measurement and reconstruction
for images in both the spatial and wavelet domains, we now overview
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several other prominent solutions for CS of images that have appeared
in recent literature. Perhaps the most popular approach to the CS
of images follows the MS paradigm [125] in which different decompo-
sition levels in the wavelet domain are measured and reconstructed
independently using a generic CS reconstruction. For example, in
[5, 35, 63, 64, 77], this approach is applied using the generic reconstruc-
tions orthogonal matching pursuits (OMP) [123], stagewise orthogonal
matching pursuit (StOMP) [40], sparsity adaptive matching pursuits
(SAMP) [35], compressive sampling matching pursuit (CoSaMP) [91],
and Bayesian compressive sensing [5, 72]. As representative of such
algorithms, we consider a multiscale variant of GPSR [47] as described
in [105]. In essence, in this multiscale GPSR (MS-GPSR), GPSR recon-
struction is applied independently to each DWT level; subrates in
the individual levels are varied such that the baseband is retained in
full, and successively higher-resolution decomposition levels feature a
reduced subrate.

An example of a wavelet-domain CS measurement and reconstruc-
tion that is more sophisticated than the simple generic reconstructions
like MS-GPSR involves the use of the well-known fact that wavelet coef-
ficients inhabit a cross-scale tree structure in the transform domain
(e.g., [111]). This tree-structured prior model has been incorporated
into CS reconstruction both as an explicit coefficient structure [9] as
well as in the form of a statistical model [63, 64]. In this latter statistical
approach, called tree-structured wavelet compressed sensing (TSW-CS)
[63, 64], a hierarchical Bayesian model is imposed on the coefficients
across the DWT scales.

Fitting an a priori signal model to the CS reconstruction model is
a frequently adopted strategy for the CS of images. In [77], a Gaussian
scale mixture (GSM) [98] model is incorporated into several wavelet-
domain CS reconstructions including reweighted �1 minimization [19],
iteratively reweighted least squares [30], and iterative hard thresholding
[14, 15]. Additionally, a spatial-domain piecewise autoregressive (PAR)
model was incorporated into a spatial-domain CS reconstruction in [136].
This latter technique, called model-based adaptive recovery of compres-
sive sensing (MARX) in [136], adopts the PAR model to better handle
nonstationarity of the sparsity support that images exhibit spatially.
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Finally, there exist a number of algorithms for the general problem
of inverse imaging that are often used in deconvolution or inpainting
applications but can be applied to CS reconstruction as a special case.
Such techniques include the algorithms of [11, 13, 135]. As represen-
tative of this general class of CS reconstruction, we consider the split
augmented Lagrangian shrinkage algorithm (SALSA) of [2]. SALSA is
a rather flexible solution to the CS reconstruction problem — when
applied to CS, SALSA reconstructs from a full-image SRM-based mea-
surement by enforcing either �1 sparsity in some transform domain
(we use a DWT) or a minimum TV norm. We have found that DWT-
based SALSA works better than its TV-based counterpart for the CS
reconstruction of still images; additionally, we have found that the orig-
inal SALSA implementation of [2] outperforms the later constrained
variant of [3].

In the experimental results to follow, we compare several of
the algorithms mentioned here to the BCS-SPL, MS-BCS-SPL, and
TV algorithms discussed previously. Throughout our evaluations, we
largely concern ourselves with algorithms that have implementations
readily available. Additionally, we restrict our attention to only those
implementations that can handle images of a relatively large size (i.e.,
512 × 512). This constraint effectively rules out algorithms which can-
not accommodate SRM-based measurement operators (e.g., Bayesian
compressive sensing [5, 72] and TSW-CS [63, 64], both of which directly
access rows/columns of the measurement matrix) or which require an
excessively long time to reconstruct a single image (e.g., MARX [136]).
By “excessively long,” we mean more than several hours on a modern
computer — given that we will be subsequently considering reconstruc-
tion of multiple frames for video, it is imperative that realistic recon-
structions for video be based on still-image reconstructions that are
significantly more expeditious.

3.7 Comparison of Various CS Techniques for Images

We now evaluate the performance of various algorithms described above
on several grayscale images of size 512 × 512. We compare the origi-
nal BCS-SPL [89] with spatial-domain BCS, MS-BCS-SPL [50] with
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wavelet-domain BCS, TV reconstruction [17], MS-GPSR [105], and
SALSA [2]. Both MS-BCS-SPL and BCS-SPL use a DDWT [78] as the
sparsity transform Ψ with bivariate shrinkage [107] applied within the
DDWT domain to enforce sparsity as described in [89]. MS-BCS-SPL
uses a three-level DWT with the popular 9/7 biorthogonal wavelets [4]
as the measurement-domain transform Ω. At decomposition level l of
Ω, blocks of size Bl × Bl are individually measured in the DWT domain
using the scrambled block-DCT SRM measurement operator of [36]; we
use blocks of sizes Bl = 16, 32, and 64 for decomposition levels l = 1,2,
and 3, respectively (l = 3 is the highest-resolution level). On the other
hand, BCS-SPL uses B × B block-based measurement applied directly
on the image in its ambient domain; here, B = 32. TV and SALSA use
the scrambled block-Hadamard SRM of [54] to provide a fast whole-
image, spatial-domain CS measurement; additionally, SALSA employs
a 9/7 biorthogonal DWT as a sparsity transform. Finally, MS-GPSR
is implemented similarly to MS-BCS-SPL — GPSR reconstruction is
applied independently to each DWT level using the same Ω as MS-BCS-
SPL; subrates in the individual levels follow Table 3.2 with measure-
ment using a scrambled block-DCT SRM applied to the entire DWT
level. We use our implementation4 of BCS-SPL and MS-BCS-SPL, �1-
magic5 for TV, and the GPSR6 and SALSA7 implementations from
their respective authors.

The reconstruction performance of the various algorithms under
consideration is presented in Table 3.3. In most cases, the wavelet-
domain measurement and MS reconstruction of MS-BCS-SPL provides
a substantial gain in reconstruction quality over the spatial-domain
measurement of BCS-SPL, generally on the order of a 1- to 3-dB
increase in PSNR. Additionally, MS-BCS-SPL outperforms TV recon-
struction in most instances despite the fact that TV has the advantage
of full-image measurement; the gains of MS-BCS-SPL over TV are par-
ticularly significant at the lowest subrates. MS-BCS-SPL also generally
outperforms MS-GPSR even though the latter globally measures each

4 http://www.ece.msstate.edu/˜fowler/BCSSPL/.
5 http://www.l1-magic.org.
6 http://www.lx.it.pt/˜mtf/\gls{GPSR}/.
7 http://cascais.lx.it.pt/˜mafonso/salsa.html.



340 Block-Based Compressed Sensing for Still Images

Table 3.3. Reconstruction PSNR in dB; images are 512 × 512.

Subrate

Algorithm 0.1 0.2 0.3 0.4 0.5

Lenna
MS-BCS-SPL 31.6 34.7 36.7 37.9 39.0
BCS-SPL 28.0 31.6 33.7 35.4 36.9
TV 29.9 32.9 35.0 36.8 38.4
MS-GPSR 30.3 33.6 35.2 36.3 37.8
SALSA 23.9 28.5 31.6 34.0 36.0

Barbara
MS-BCS-SPL 23.8 25.1 26.1 27.4 28.8
BCS-SPL 22.4 23.8 25.4 27.0 28.7
TV 23.0 24.5 26.3 28.4 30.8
MS-GPSR 24.0 25.3 26.1 27.5 29.6
SALSA 19.7 22.7 25.1 27.7 30.4

Peppers
MS-BCS-SPL 31.1 34.2 35.7 36.8 37.7
BCS-SPL 29.0 32.1 33.8 35.2 36.4
TV 30.4 33.1 34.7 35.9 37.0
MS-GPSR 29.3 31.9 33.1 34.2 35.8
SALSA 23.3 28.2 31.2 33.3 35.0

Mandrill
MS-BCS-SPL 21.4 23.0 24.6 25.5 26.5
BCS-SPL 20.5 21.8 22.9 23.9 25.1
TV 20.5 22.0 23.4 24.9 26.5
MS-GPSR 21.5 22.9 24.3 25.1 26.3
SALSA 16.6 19.6 21.1 22.5 24.2

Goldhill
MS-BCS-SPL 29.0 31.1 32.8 33.7 34.7
BCS-SPL 27.1 29.1 30.5 31.8 33.1
TV 27.5 29.9 31.6 33.2 34.8
MS-GPSR 28.5 30.4 32.2 33.0 34.1
SALSA 22.9 26.0 28.2 30.2 32.0

resolution level. The primary exception is the “Barbara” image —
although MS-BCS-SPL outperforms TV at the lowest subrates, MS-
GPSR is slightly better. However, TV dominates the performance
comparison for “Barbara” at the higher subrates. Figure 3.7 depicts
typical reconstruction results for the “Lenna” image using a subrate
S = 0.1; these figures show only a detailed portion from the center of
the image.

As can be seen in Table 3.4, in terms of execution times, recon-
struction with MS-BCS-SPL is only slightly slower than BCS-SPL, each
running for about half a minute on a dual-core 2.8-GHz machine. On the
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Fig. 3.7 Reconstructions of the 512 × 512 “Lenna” image (shown in detail) for a subrate
of S = 0.1.

other hand, SALSA is somewhat slower, while the execution times of
both MS-GPSR and TV are some two orders of magnitude longer, with
TV requiring nearly two hours to reconstruct a single image despite the
use of a fast SRM measurement operator.
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Table 3.4. Reconstruction time for the 512 × 512 “Lenna”
image at subrate of 0.3.

Algorithm Time (s.)

BCS-SPL 30
MS-BCS-SPL 46
SALSA 111
MS-GPSR 1173
TV 6584

3.8 Perspectives

In applying the CS paradigm to still images, two primary challenges
must be addressed. First, the CS reconstruction should be specifically
tailored to the fact that the underlying signal is an image, and, sec-
ond, the measurement and reconstruction processes must accommodate
the large-sized signals that accompany multidimensional data without
imposing large computational or memory burdens. Above, we have dis-
cussed several solutions for the first issue, including the imposition of
smoothness, directional sparsity transforms, as well as CS measurement
in the wavelet domain. For the second issue, we have considered the use
of both SRMs as well as block-based measurement operators in both
the measurement and reconstruction processes.

Overall, the MS-BCS-SPL algorithm [50] effectively addresses both
issues — MS-BCS-SPL retains the fast execution speed associated with
block-based measurement while rivaling the quality of CS reconstruc-
tions such as TV that employ full-image measurement. However, there
exist practical-implementation issues for any CS technique employing
wavelet-domain measurement, including the MS-BCS-SPL and MS-
GPSR [105] approaches considered here as well as other prominent
CS reconstructions such as TSW-CS [63, 64].

Specifically, the general advantages of BCS are a reduced compu-
tational complexity in reconstruction as well as a greatly simplified
measurement-operator implementation in both the reconstruction as
well as sensing processes. A multiscale BCS in the wavelet domain like
that used in MS-BCS-SPL retains these advantages for reconstruction;
however, the decomposition of the measurement process as Φ = Φ′Ω
entails that the transform Ω (a dense matrix) wrecks the block-diagonal
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structure of Φ′. As a consequence, the resulting Φ becomes dense and
thus a challenge to implement within a CS sensing device. In fact, it
is not clear that this can be done without simply storing the dense
Φ within the sensing device. As a consequence, wavelet-domain mea-
surement defeats the computation and memory advantages of BCS in
the sensing device, although these advantages can still be exploited on
the reconstruction side of the system. Furthermore, wavelet-domain
measurement with most popular wavelets will require the measure-
ment matrix Φ to be real-valued even if the underlying Φ′ is binary
or Rademacher, thereby requiring duty cycling in a single-pixel cam-
era and further complicating the acquisition process. The situation is
similar for SRMs — when Φ′ is implemented by an SRM, the dense
transform Ω prevents the procedural generation of the measurement
process in the sensing device, again requiring dense storage of a real-
valued Φ. Spatial-domain measurement — either block-based (as in
BCS-SPL) or SRM-based (as in TV) — does not encounter this imped-
iment to practical implementation. As a consequence, we will primarily
focus on spatial-domain measurement from this point going forward.

In the remainder of this monograph, we turn our attention away
from the reconstruction of a single still image and toward applications
dealing with multiple images, namely, video sequences and multiview
imagery. In each of these applications, we will find ourselves recon-
structing a set of multiple images, a task that we could, of course,
accomplish by reconstructing each image independently. However, we
shall see that significant performance gains can be obtained through
reconstructing the multiple images while capitalizing on any correla-
tion that exists across the image set. In any event, we will require a
very fast still-image recovery as the foundation of CS reconstruction
for this more complicated, multiple-image data in the remainder of
this monograph, since the still-image reconstruction will be employed
numerous times. Due to its exceedingly fast computation, we therefore
employ BCS-SPL as the still-image reconstruction engine upon which
mechanisms for the exploitation of cross-image correlation are built.
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Block-Based Compressed Sensing for Video

In much of the literature in the area of compressed sensing (CS), the
primary goal has largely been the blind reconstruction of CS-acquired
signals. That is, for the most part, many CS reconstruction strategies
are oblivious to the structure of the signal being recovered beyond
a general assumption of sparsity in some transform basis. Recently,
however, several reconstruction approaches have focused on situations
in which additional information about the signal content is available
to aid signal reconstruction; sometimes this additional information is
called “side information.” Of specific interest here is the situation in
which one or more predictions of the signal to be recovered are available
to the CS reconstruction process. Video sequences are one form of data
in particular in which predictions are commonly used in various forms
of processing. Specifically, it is typical in video processing that one or
more reference frames are used to make predictions of some current
frame such that the resulting residual frame has dramatically lowered
signal energy leading to more efficient representation and processing.
This paradigm is, in fact, fundamental to the traditional source coding
of video and an essential part of all modern video standards such as
MPEG [67, 68] and H.264/AVC [65].

344
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We now consider the CS reconstruction of video sequences in which
frame-to-frame predictions are used to aid the CS-reconstruction pro-
cess. In effect, we investigate CS reconstruction on the prediction resid-
ual which is, in most cases, significantly more compressible, in the
sense of (2.4), than the original frame; such prediction thus results in a
higher-quality CS reconstruction. Key to this prediction-driven resid-
ual reconstruction is the use of motion estimation (ME) and motion
compensation (MC) such that the frame-to-frame predictions compen-
sate for object motion between frames. Such use of ME/MC derives
from traditional video-coding algorithms which make extensive use of
sophisticated MC strategies.

4.1 CS Acquisition of Video

CS acquisition of video would ideally be global in the sense that CS
measurements would span the entire spatial and temporal extent of a
video sequence; however, such global CS acquisition of video is largely
considered impractical to implement in a real device [41]. As a conse-
quence, we focus on the case in which each video frame is acquired inde-
pendently with still-image-based CS measurement, for instance, with
successive applications of a single-pixel camera as was done in [132].
While other approaches to acquisition might eventually be possible, we
consider the single-pixel camera to be a straightforward and realizable
framework for capturing images and video via linear projection.

More specifically, CS theory dictates that it is possible to recover
a signal of dimension N from a set of measurements of dimension
M where M � N . In the canonical CS acquisition or measurement
process,

y = Φx, (4.1)

we see that these measurements are calculated as a projection of
the entire N -dimensional signal by an M × N random projection
matrix, Φ. Complications in designing CS hardware arise due to the
global nature of this dimensionality-reduction step. That is, a CS device
must be able to simultaneously view the entirety of a signal (for video,
this means in space as well as in time) and calculate its projection
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by Φ non-computationally in the ambient signal domain. Because of
this requirement, simultaneous spatial and temporal measurement of
video appears impractical [41], and thus one opts for frame-by-frame
measurement.

4.1.1 Hardware Limitations

In the case of natural image signals, we have already employed the
single-pixel camera [42, 115, 131, 132] for static-scene measurement.
However, the single-pixel camera entails multiple measurements con-
ducted sequentially in time such that the total time to acquire a given
signal is increased by a factor of M . Thus, for dynamic scenes, there
is a potential for disagreement between successive measurements, as
each measurement of the scene is at a different point in time. If object
motion between measurements is significant, there could be blurring or
other reconstruction errors when recovering the signal from the mea-
surements. For this reason, a viable CS sensing device for dynamic
scenes (i.e., video) which uses single-pixel acquisition must have a very
short exposure time and delay between measurements.

More specifically, for the CS measurement of video at a target frame
rate, Rf , using M measurements for each frame, each measurement
must be captured within 1/(RfM) seconds. For high-resolution video,
M can be somewhat large (though, of course, still much less than the
number of pixels, N), and this puts a tight restriction on the sens-
ing device when the measurements are captured sequentially. However,
the latest micro-mirror arrays have attained very fast switching speeds,
and these speeds are increasing each year as research into microelec-
tromechanical systems (MEMS) continues. For example, [92] reports an
MEMS device capable of switching mirror states in 225 ns; such a digi-
tal micromirror device (DMD) would permit CS measurement of video
with 720 × 480 frames at a subrate of S = 0.3 with a frame rate of

Rf =
1

720 · 480 · 0.3 · 225 × 10−9 ≈ 42frames/s. (4.2)

While devices with such switching speeds are not yet in commercial
production, even devices with much lower switching rates (e.g., on the
order of 0.1–1 MHz) can accomplish video acquisition by trading-off
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spatial resolution, frame rate, or reconstruction quality. For exam-
ple, at a switching rate of 0.5 MHz and a subrate S = 0.2, a video
sequence could be captured at standard CIF resolution (352 × 288) at
Rf ≈ 24frames/s.

If the measurement matrix Φ has real-valued, rather than binary,
entries (as is the case with a dense Gaussian measurement operator),
it is possible to use pulse-width modulation or dithering to simulate
fractional transmittance from the mirror to the sensor. However, such
approaches are problematic. Firstly, the fractional values are subject to
quantization error induced by the accuracy of the pulse-width modula-
tion. Secondly, for a fixed measurement subrate, the mirror-switching
speed must be increased by a factor dependent on the quantization
precision used.

To reduce some of the necessary tradeoffs caused by sequential mea-
surement, multiple sensors operating in parallel may be used to increase
the effective measurement subrate. A multiple-pixel device would oper-
ate in much the same manner as the single-pixel camera and would still
maintain a low sensor density as compared to a full-resolution sensor.

4.1.2 Physical Limitations

The exposure time necessary to accurately measure the amount of radi-
ation incident on the photosensor is another — and perhaps more signif-
icant — component to the time required for each measurement. Expo-
sure time presents a challenge: if the exposure time is too short, then
noise from dark current within the system or Poisson noise induced
by the photon arrival rate can overwhelm the actual measurements,
requiring more sophisticated — and costly — photosensors. However,
the increased cost of such photosensors is offset by the fact that there
would be need for only one photosensor rather than an entire array.
Also, using the single-pixel framework, photons from all the mirrors
that face the sensor are concentrated onto a single sensor during mea-
surement. For example, consider block-based compressed sensing (BCS)
using blocks of size 64 × 64. If we assume that, on average, half the
mirrors point toward the sensor for any given measurement, the sen-
sor is exposed to 642/2 ≈ 2000 times more light than a single sensing
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element would be in a traditional dense-array sensor. This focusing of
energy increases the signal-to-noise performance of the single sensor
as compared to the limited spatial binning capabilities of sensors in a
dense-grid configuration.

These considerations make high spatial- and time-resolution video
difficult but arguably not impossible. In a general sense, the design
of CS acquisition devices would necessitate some tradeoff between the
number of measurements acquired for each frame, the desired frame
rate (temporal resolution), and the exposure time for each measure-
ment. For example, applications such as distributed video networks, or
other ad hoc distributed sensor networks, could make use of cheaper CS
video-sensor systems in surveillance capacities wherein spatial resolu-
tion is not the top priority. With smaller-resolution frames, the number
of measurements for each frame decreases for a given target subrate,
thereby allowing greater exposure time for each measurement within a
frame-rate constraint.

Many of these design constraints might be justified in settings
wherein every measurement is costly or the sensors themselves are
costly. Sensing signals in exotic spectra — such as in thermal, tera-
hertz, and medical imaging — represent areas wherein CS can poten-
tially reduce either device or acquisition cost. Except for perhaps niche
applications, imaging within the visible domain using CS is not likely to
be competitive with existing low-cost CCD or CMOS imagers. However,
in the remainder of our discussion, we use visible-domain imagery in
our experiments to explore potential recovery techniques for signals.
Thermal, infrared, and medical images exhibit characteristics similar to
natural, visible domain, images — most importantly, piecewise smooth-
ness. Because of these similarities, we anticipate that the methods we
demonstrate could also be applied to extra-visible spectra with similar
effect.

4.1.3 Block-Based Acquisition of Video

So far, this discussion has considered only the case of a globalized, and
therefore dense, structure of Φ. From prior discussion, we know there
are some inherent drawbacks to such a dense measurement process,
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such as reconstruction time and the memory requirements of storing Φ.
However, the hardware of the single-pixel camera can accommodate
a BCS measurement procedure, and the practical considerations dis-
cussed here still apply in the BCS context. BCS also has the added
advantage of decreasing the bandwidth required to transmit measure-
ment vectors between system memory and the DMD array since a
small measurement vector can be transmitted once and subsequently
translated across the DMD array for each block.

For static images, BCS measurement is straightforward, requiring
only a block-diagonal Φ be employed. In the case of BCS of video,
however, since each block is measured independently, each block repre-
sents a different point in the time of the scene, rather than each frame.
On the one hand, because fewer measurements are required for a single
block than for an entire image, the time duration between the first mea-
surement and the last measurement in a given block is a multiplicative
factor less than if we take global measurements of the entire frame.
This decreases the possibility for blurring within a given block in a
frame. On the other hand, since each block represents a different point
in time, there could be some content drift between the blocks of a given
frame if the dynamic content being represented is changing sufficiently
fast. If it is more desirable to have blurring rather than drift, then the
CS device could scan through the blocks repeatedly, taking a single
measurement at a time. This would simulate the measurement timing
of a global CS measurement of the frame and could be accomplished
by simply reordering the rows of the block-diagonal Φ.

4.2 Straightforward CS Reconstruction for Video

The straightforward implementation of CS on video would involve, as
for images, the vectorization of a 3D group of frames into a single
1D vector. However, the computation and memory issues associated
with this vectorization approach for 2D images are exacerbated with
the even greater dimensionality present in video data. Additionally, a
global sensing simultaneously across the spatial and temporal extent
of a group of frames is likely to be impractical as mentioned before.
Consequently, we focus on the situation in which video frames are
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acquired independently in a 2D fashion, e.g., by applying a suitable
image acquisition (e.g., single-pixel camera) in a frame-by-frame fash-
ion as in [131, 132]. Again, to cut computation and memory, we focus
on a block-based image measurement applied frame by frame. We now
consider several strategies for the CS reconstruction of video frames
acquired in this manner; these include both intraframe and 3D versions
of BCS-SPL.

Given a frame-by-frame acquisition, the most straightforward recon-
struction would be to reconstruct the individual frames independently
using the BCS-SPL procedure introduced previously. However, such
an intraframe BCS-SPL reconstruction ignores the fact that consecu-
tive video frames are usually highly correlated. Nonetheless, intraframe
BCS-SPL serves as a baseline against which to compare other tech-
niques that do attempt to exploit such temporal correlation.

Another straightforward method of CS reconstruction for video that
does make an effort to exploit temporal correlation is to treat the video
frames as a 3D “volume” and reconstruct the 3D video volume by
applying a suitable CS reconstruction algorithm using a 3D transform;
this was done, for example, in [131, 132]. Although such 3D reconstruc-
tion could be applied across a video volume as a whole (as in [131, 132]),
for computation and memory issues (which are likely to be substantial
given the increased dimensionality), we consider a 3D version of the
BCS-SPL algorithm, essentially extending BCS-SPL reconstruction for
a single still image into three dimensions, with the video volume being
partitioned into smaller, 3D cubes.

Specifically, let us consider a group of P consecutive frames from
a video sequence which we call a group of pictures (GOP). Again,
for video acquisition, the individual video frames are acquired using a
2D block-based measurement applied frame by frame. For reconstruc-
tion, the GOP is partitioned into B × B × P cubes; i.e., 3D blocks
which have a spatial size of B × B and a temporal size of P . The
BCS-SPL reconstruction then uses a 3D block-based transform oper-
ator; e.g., a 3D discrete cosine transform (DCT) of size B × B × P .
For thresholding, we employ a variation on (3.13) wherein the median
operator is replaced by the mean (i.e., σ(i) = mean(|ˇ̌x(i)|)/0.6745); we
have observed empirically that this mean-based estimator yields faster
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convergence in the Landweber operation for video. We refer to the
resulting technique as 3D-BCS-SPL reconstruction.

It was argued in [132] that, in effect, CS reconstruction using a
3D transform — such as the 3D-BCS-SPL discussed here — attempts
to exploit the frame-to-frame correlation that exists within a video
GOP through the joint sparsity that occurs in the 3D transform. This
is in contrast to intraframe BCS-SPL reconstruction which makes no
attempt at all to exploit frame-to-frame correlation. However, neither
of these two approaches takes full advantage of the temporal correlation
that exists in the video sequence due to the frame-to-frame motion of
objects. For this, some form of ME/MC must be incorporated into the
reconstruction; we consider such ME/MC-based reconstruction next.

4.3 The Motion-Compensated BCS-SPL Algorithm

In video coding, knowledge of object motion is used to make inter-
frame predictions which are, in turn, used to drive an efficient cod-
ing of prediction residuals. As a result, ME/MC is a widely used and
crucial component to traditional video-coding systems. In [90], this
ME/MC framework was incorporated into the reconstruction process
of BCS-SPL. This implies that ME/MC resides at the reconstruction,
or “decoder,” side of a BCS-SPL system for video, rather than at the
sensing, or “encoder,” side as is the case in traditional video cod-
ing. The BCS-SPL for video proposed in [90] uses the same simple
measurement as was used for 2D images previously — block-based
random CS measurements are applied frame by frame. The result-
ing motion-compensated version of BCS-SPL, or motion-compensated
BCS-SPL (MC-BCS-SPL), consists of several main components: resid-
ual reconstruction, in which BCS-SPL is applied to an MC residual;
multihypothesis initialization, in which intraframe BCS-SPL is used
to initialize the MC-BCS-SPL reconstruction; and forward/backward
MC, in which multiple reconstruction passes are performed in multiple
directions across the GOP. These components are explored below.

4.3.1 Residual Reconstruction

Suppose we have two consecutive frames, the current frame, x, and
the reference frame, xref. We assume that the reference frame has been
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previously reconstructed, while we have only random measurements, y,
of the current frame, using BCS measurement. As a first step, we could
reconstruct an approximation, x̂, to current image x by simply applying
the BCS-SPL image reconstruction to y (we consider a more sophis-
ticated estimate of x̂ later). However, such intraframe reconstruction
does not capitalize on our knowledge of reference frame xref. Yet, at
this point, we have approximations to the current frame as well as to
the reference frame — we can perform ME on these two frames to
estimate a motion field describing motion of objects between the two
frames. Such ME could be performed in a variety of ways; for simplic-
ity we consider full-search, block-based ME as is commonly used in
video coding. Consequently, the approximation to the current frame,
x̂, is partitioned into blocks whose motion from the reference frame is
indicated by a field of motion vectors. This permits the production of a
motion-compensated frame, x̂mc, that forms a prediction of x̂ and thus
also the still-unknown true current frame x. Using this prediction, we
can form a “projection-domain” residual by simply applying the known
block-based random measurement operator to the motion-compensated
frame; i.e., for each block j:

yrj = yj − ΦBx̂mcj . (4.3)

It is clear that yrj is the random projection of the residual, xrj , between
our motion-compensated prediction x̂mcj and the original and still-
unknown block xj ; i.e.,

yrj = yj − ΦBx̂mcj = ΦB

(
xj − x̂mcj

)
= ΦBxrj . (4.4)

If the MC process is reasonably accurate, the residual frame xr

should be more compressible — in the sense of (2.4) — than the orig-
inal image x. This is demonstrated empirically for a video sequence in
Figure 4.1 wherein it is seen that, in reference to (2.4), the transform-
coefficient magnitudes decay more quickly for the residual frame xr

than for the original frame x. In such a case, CS reconstruction will
thereby be more effective at recovering the residual xr from yr than it
is at recovering x from y. Let x̂r be such a BCS-SPL reconstruction
from yr; consequently, we can form a new approximation to x as

x̂ = x̂mc + x̂r. (4.5)
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Fig. 4.1 Decay of the magnitudes of the transform coefficients for frame 1 of the “Foreman”
video sequence as compared to that of the motion-compensated residual between frames 1
and 0. ME/MC is based on 16 × 16 blocks with quarter-pixel accuracy over a window of
size 15 × 15 pixels; ME/MC is performed between the original frames of the sequence. The
transform is a 4-level biorthogonal 9/7 DWT.

We now have a new approximation to the current frame that is of
better quality than the initial approximation that we created from a
direct BCS-SPL reconstruction from y. Consequently, we will be able
to produce a more accurate motion-vector field from ME applied to this
new x̂ and xref, and further enhancement can be expected by iteratively
repeating the above process. The resulting MC-BCS-SPL algorithm [90]
is summarized in Figure 4.2.

4.3.2 Multihypothesis Initialization

We now return to the issue of producing an initial estimate, x̂, of the
current frame. Let us assume two frames again, reference frame, xref,
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Fig. 4.2 MC-BCS-SPL reconstruction of the current frame from a single reference frame.
BCS-SPL(·) is the BCS-SPL reconstruction from Figure 3.2; Initialize(·) is described in
Figure 4.3 (from [90]).

and random measurement, y, of the current frame, x. As mentioned
above, one possible way to obtain an initial guess for the current frame
is to apply BCS-SPL; let this estimate be x̂′. An alternative approach
would be a residual reconstruction of the frame-to-frame difference
with the motion field set to zero. The former approximation might
be suitable for a dynamic sequence with high-motion content. On the
other hand, some natural video sequences are relatively stationary, such
as newscasts and surveillance video whose motion vectors are mostly
zero or close to zero; in these cases, a residual reconstruction with a
zero motion field might be more appropriate as an initial reconstruc-
tion. In this zero-motion case, the residual reconstruction (4.3) can be
rewritten as

yrj = yj − ΦBxrefj , (4.6)

leading to an alternate estimate, x̂′′, of the current frame.
Both of these approaches — BCS-SPL reconstruction as well as

zero-motion residual reconstruction — provide a guess for the current



4.3 The Motion-Compensated BCS-SPL Algorithm 355

Fig. 4.3 Multihypothesis initialization in MC-BCS-SPL reconstruction.

frame, but neither is likely to be exactly correct, and each might be
somewhat different than the true current frame. As a consequence, as
the final initial frame, we average these two approximations as the ini-
tial guess for the MC-BCS-SPL reconstruction. This process, which is
depicted algorithmically in Figure 4.3, is similar to multihypothesis MC
(e.g., [57, 112]) in traditional video coding, so we refer to it as multi-
hypothesis initialization. We have observed empirically over a variety
of video sequences that this multihypothesis initialization outperforms
either of the single hypotheses, x̂′ or x̂′′, used alone; sample results
are illustrated in Figure 4.4. In short, in the absence of significant
motion, multihypothesis initialization permits the initial reconstruc-
tion to exploit the reference frame in the case that it has higher quality
than the intraframe reconstruction of the current frame (which is, in
fact, likely, due to the forward–backward reconstruction process which
we discuss next).

4.3.3 Forward/Backward Motion Compensation

Thus far, we have considered the reconstruction of two consecutive
frames of a video sequence. We now turn our attention to the more
realistic problem of applying MC-BCS-SPL to multiple frames. Specif-
ically, let us consider a GOP of P consecutive frames from a video
sequence, consisting of one “key frame” (the first frame) followed by
P − 1 “non-key frames.”
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Fig. 4.4 Various strategies for the initial estimate of the current frame within MC-BCS-SPL.
Results are for frame 1 of the “Coastguard” sequence with frame 0 as the reference frame
xref; the reference frame is reconstructed independently using BCS-SPL with a subrate of
0.7. Performance is shown for MC-BCS-SPL reconstruction of the current frame using the
designated initialization (see Figure 4.3) for the current frame: intraframe initialization (x̂′),
zero-motion residual initialization (x̂′′), or multihypothesis initialization ([x̂′ + x̂′′]/2).

In the MC-BCS-SPL setting, we have block-based random mea-
surements of each of the frames of the GOP; i.e., yp = Φpxp for
0 ≤ p ≤ P − 1, where p is the frame number. Φp is the random
block-based measurement operator for frame p; we assume that this
measurement operator has subrate of Sp = Mp/N in that it reduces
the N -dimensional xp image signal to an Mp-dimensional measurement
signal yp. We will focus our attention on two cases: (1) all frames are
acquired with the same subrate, and (2) the key frame, x0, is acquired
at a relatively high subrate, while all the non-key frames are at an
identical lower subrate.
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Direct, intraframe BCS-SPL reconstruction from y0 produces x̂0,
a reconstruction of the key frame which is then used as the reference
frame for the MC-BCS-SPL reconstruction of the second frame of the
GOP. This MC-BCS-SPL process produces x̂1 from y1 and x̂0; x̂1 is
then in turn used as the reference frame in MC-BCS-SPL reconstruc-
tion of x̂2 from y2. This process continues through in this manner to
reconstruct the remaining frames of the GOP.

We note, however, that, since each frame is used as a reference for a
subsequent frame, we have observed a successively lower reconstruction
quality as we progress through the non-key frames. That is, we have
observed reconstruction quality to deteriorate with increasing frame
number p, such that the quality of x̂P−1, the reconstructed last frame
of the GOP, will be much less than that of x̂0, the first frame of the
GOP. In [90], it is proposed to combat this quality deterioration by
performing another iteration of MC-BCS-SPL reconstruction on the
GOP, but this time running in the reverse temporal direction, from
frame P − 1 to frame 0.

Specifically, we assume that there exists another GOP following the
current GOP, with xP being the first frame of that GOP (here, we
abuse our notation by indexing this frame from the next GOP rela-
tive to the current GOP). Direct BCS-SPL reconstruction from yP will
produce a reconstruction x̂P ; this reconstruction can be used as the ref-
erence frame for the MC-BCS-SPL reconstruction of yP−1 to produce
x̂P−1. We could continue MC-BCS-SPL reconstruction in this reverse
temporal direction until we reach the start of the current GOP.

Running MC-BCS-SPL reconstruction on the current GOP in both
the forward and backward temporal directions would yield two recon-
structions for each non-key frame of the GOP. Our experimental
observations have revealed that MC-BCS-SPL in the forward tempo-
ral direction yields the higher-quality reconstruction for the first half
of the GOP, while MC-BCS-SPL in the backward temporal direc-
tion yields the better quality for the last half of the GOP. Assume
that the GOP consists of an even number of frames. Thus, in [90],
it is proposed to use forward MC-BCS-SPL to reconstruct frames
x̂p for 1 ≤ p ≤ P

2 − 1, the first half of the non-key frames, and back-
ward MC-BCS-SPL (starting from the key frame of the next GOP)
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to reconstruct frames x̂p for P
2 + 1 ≤ p ≤ P − 1. To reconstruct the

center frame, x̂P/2, we slightly modify the MC-BCS-SPL procedure of
Figure 4.2 to incorporate bidirectional MC prediction. Specifically, MC-
BCS-SPL iterates first using x̂P/2−1 (the forward reference frame) as
the reference frame for the MotionCompensation(·) operator, and then
iterates using x̂P/2+1 (the backward reference frame). This process is
repeated for an additional set of both forward and backward iterations
to yield the final reconstruction of the center frame. Figure 4.5 illus-
trates this forward/backward MC-BCS-SPL reconstruction process.

Because center frame x̂P/2 is recovered using both forward and
backward reconstruction, it turns out to usually have a relatively high
reconstruction quality. As a second and final stage of reconstruction,
we update the frames between the center frame (x̂P/2) and the key
frames (x̂0 and x̂P ) by performing the same bidirectional reconstruc-
tion as was used on the center frame. A complete description of the two
phases of reconstruction is given in Table 4.1. In this table, Phase 1
is forward/backward reconstruction from Figure 4.5, while Phase 2 is
“enhancement” reconstruction from the center frame toward the two
key frames in reverse direction.

Fig. 4.5 MC-BCS-SPL reconstruction applied to a GOP of size P = 8 frames. Black frames:
direct (intraframe) BCS-SPL reconstruction of key frames; white frames: forward/backward
MC-BCS-SPL reconstruction of non-key frames (forward MC-BCS-SPL for frames 1–3,
backward MC-BCS-SPL for frames 5–7); gray frame: bidirectional MC-BCS-SPL recon-
struction of center non-key frame.
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Table 4.1. Two-phase multiframe reconstruction for a GOP of
size P = 8. Phase 1 — forward/backward reconstruction and bidi-
rectional center-frame reconstruction; Phase 2 — enhancement
reconstruction between the center frame and the two key frames.

Current frame Reference frame

Phase 1

1 0
2 1
3 2
8 7
7 6
6 5
4 3, 5∗

Phase 2

3 4
5 4
2 1, 3∗
1 2
3 2
6 5, 7∗
5 6
7 6

∗Bidirectional reconstruction.

4.4 Other Approaches to CS Reconstruction of Video

While the straightforward video reconstructions represented by
intraframe BCS-SPL and 3D-BCS-SPL do not exploit ME/MC, the
MC-BCS-SPL technique [90] discussed above does. In recent literature,
there have been a number of strategies proposed for the CS reconstruc-
tion of video, and one finds both techniques that use explicit ME/MC
as well as those that do not. Below, we survey recent literature in the
area of CS reconstruction of video — we first consider techniques with-
out ME/MC before considering several approaches that exploit explicit
ME/MC processes.

4.4.1 Approaches Without Motion Estimation or
Compensation

A number of approaches to the CS reconstruction of video were devel-
oped for the particular case of dynamic magnetic resonance imaging
(MRI). This type of image sequence tends to have less motion, and
the motion tends to be less of a strictly translational nature, than does
video acquired from natural photographic scenes. Initial work adopted
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the volumetric reconstruction employed originally in [131, 132] — for
example, [52] reconstructs a dynamic MRI volume using a temporal
Fourier transform coupled optionally with a spatial wavelet transform
as a 3D sparsity basis.

Vaswani et al. [81, 101, 126, 127, 128] have proposed a variety
of related approaches for the CS reconstruction of dynamic MRI
data. Fundamental to several of these techniques [81, 101, 127] is
the general strategy of residual reconstruction from a prediction of
the current frame as is employed in MC-BCS-SPL, the key difference
being that, rather than using an ME/MC-based prediction, Vaswani
et al. employ a least-squares [127] or Kalman-filtered [101] prediction.
These predictions are driven by an explicit sparsity pattern for the
current frame; the techniques attempt to track this sparsity pattern
as it evolves from frame to frame. It is assumed that the sparsity
pattern evolves slowly over time, an assumption that may not hold
in general video with arbitrary object motion. Another variant of
these algorithms, called “Modified-CS” [128] adopts the strategy of
finding the �1 optimal solution outside the currently known sparsity
pattern which is again tracked frame to frame. Finally, [81] coupled
the modified-CS paradigm with the residual-reconstruction strategy;
this latter variant, called “Modified-CS-Residual,” is a prominent
benchmark for gauging CS-reconstruction performance for not only
dynamic MRI but also video as well.

Alternatively, [104] proposes another strategy that also attempts to
explicitly track temporal changes in video. In this case, [104] deploys
a linear dynamical system (LDS) that models the evolution of a
video scene in terms of low-dimensional dynamic parameters and high-
dimensional static parameters such that the CS measurement process
is applied to only the dynamic portion of the signal. It is observed in
[104], however, that this LDS-based strategy works well for relatively
low-motion content of a largely textural nature, such as flames, water,
and traffic, whereas the more complex and translational motion often
associated with more arbitrary video content is not properly handled
by the model.

This observation echoes the primary drawback that applies in gen-
eral to the techniques for CS reconstruction of video that do not employ
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ME/MC. Methods such as those considered above are typically best
suited to video content that varies only quite slowly over time, such as
dynamic MRI. For more complex temporal variation, particularly the
non-stationary translational object motions that often occur in video of
natural scenes, the use of explicit ME/MC is warranted. MC-BCS-SPL
as previously described is a prime example; next, we consider several
additional techniques that incorporate some forms of explicit ME/MC
into CS reconstruction.

4.4.2 Approaches Using Motion Estimation and
Compensation

In recent literature, there have been a handful of approaches that incor-
porate ME/MC for CS reconstruction of video. In general, ME/MC will
accommodate more complex object motions than can the low-motion
techniques considered above.

In [113], an extension of the dynamic-MRI reconstruction due to
Vaswani and Lu [128] was proposed. In essence, rather than simply
estimating updates to the time-varying sparsity pattern directly from
the preceding frame, the preceding frame is first motion-compensated,
allowing for more arbitrary object motions to be handled. The tech-
nique of [113] inherits, however, the drawback identified previously for
[128] in that the temporal evolution of the sparsity pattern is assumed
to be slow.

We now overview several techniques that are most closely related
to MC-BCS-SPL [90]. Like MC-BCS-SPL, these techniques partition
a GOP into key and non-key frames, with the key frames anchor-
ing a ME/MC process of prediction of the non-key frames. Kang
and Lu [76] exploit temporal correlation by constructing a motion-
compensated interpolation between consecutive key frames. This
motion-compensated interpolation is then used as the initialization
point of a still-image CS reconstruction ([76] uses a full-frame gradient
projection for sparse reconstruction (GPSR) [47] reconstruction). This
motion-compensated interpolation replaces the linear initialization,
x = ΦTy, often used to commence still-frame reconstruction, e.g., such
as in BCS-SPL (see Figure 3.2). Also proposed is a modified stopping
criterion that terminates GPSR iterations to prevent excessive
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divergence of the reconstruction from the motion-compensated pre-
diction of the frame. The key frames are reconstructed using an
independent still-image CS reconstruction with a subrate higher than
that used for the non-key frames.

Another reconstruction algorithm driven by ME/MC between high-
quality key frames was considered in [74, 75]. This algorithm, called
focal underdetermined system solver in k–t space (k–t FOCUSS) in [74],
assumes that there exist one or two key frames obtained through some
separate means, and then CS reconstruction is driven by residuals
between each intervening non-key frame and a block-based bidirec-
tional motion-compensated prediction from each of the key frames (or a
single unidirectional motion-compensated prediction in the event that
only one key frame is available). As in MC-BCS-SPL, full-search block
matching is used for the ME/MC process. We note that k–t FOCUSS
was designed specifically for dynamic MRI; consequently, [74, 75] uses
relatively long GOPs (e.g., 25 frames for a cardiac cine sequence in [75])
with perfect key frames (i.e., subrate = 1.0) at each end.

Another ME/MC-based reconstruction was proposed by Do
et al. [34]. This technique, called distributed compressed video sensing
(DISCOS) in [34], also partitions the GOP into key and non-key frames;
however, the key frames are coded using a traditional intraframe source
coder such as H.264/AVC intracoding. The non-key frames are then
reconstructed from both block-based and frame-based CS measure-
ments; specifically, the block-based measurement of a non-key frame
is used to form a block-by-block multihypothesis motion-compensated
prediction of the non-key frame. For each non-key frame block, an �1

minimization selects which blocks in a spatial window in the neigh-
boring key frames participate in the multihypothesis prediction of
the current block. The motion-compensated prediction of the non-key
frame is then used in a residual reconstruction based on the other, full-
frame measurements of the non-key frame; this residual reconstruction
is similar to that in Figure 4.2, except that it is not iterative, and
the measurement operator is a mixture of full-frame and block-based
measurement rather than simply block-based.

Although having some similarities, there exist some substantial
differences between MC-BCS-SPL and the techniques of [34, 74, 75, 76].
For one, both Kang and Lu [76] (GOP size: 3 frames) and DISCOS [34]
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(GOP size: 4 frames) rely on short GOPs yielding frequent high-
quality key frames due to the fact that their ME/MC processes, being
based on only key frames, cannot support long temporal distances
existing between key frames. Similarly, k–t FOCUSS [74, 75] implicitly
assumes that image content changes slowly over time such that
motion-compensated interpolation over longer GOPs is feasible, as is
often the case with the dynamic MRI data for which k–t FOCUSS
was designed. In contrast, MC-BCS-SPL is built on frame-to-frame
ME/MC in which all frames, key and non-key, participate as reference
frames in ME/MC. In this sense, the techniques in [34, 74, 75, 76]
effectively ignore the motion information that can be derived from
the intervening non-key frames. Exploiting this frame-to-frame motion
permits MC-BCS-SPL to better handle the complex and rapid motions
that often occur in video.

Along these lines, MC-BCS-SPL iterates ME/MC using the latest
reconstructed frames to improve the estimate of the motion vectors
which then leads to further improvement in the frame reconstruction.
On the other hand, iterative improvement is not possible in the tech-
niques in [34, 76] since the motion-vector fields are derived from only
the key frames which are reconstructed only once.

4.4.3 Motion-Compensated Temporal Filtering

A final strategy to incorporating explicit ME/MC into CS reconstruc-
tion for video is represented by the technique proposed in [96]. In con-
trast to the ME/MC-based reconstructions like MC-BCS-SPL as well
as those of [34, 74, 75] discussed above which are inspired by the tra-
ditional hybrid video-coding architecture, the technique of [96] draws
from the strategy of motion-compensated temporal filtering (MCTF)
(e.g., [24, 27, 51, 94, 97, 106]), adopting specifically the MCTF of [106]
known as lifting-based invertible motion adaptive transform (LIMAT).
In essence, MCTF is combined with a spatial discrete wavelet trans-
form (DWT) to implement a motion-compensated 3D transform. 3D
reconstruction simultaneously across all frames similar to [131] is then
conducted. A key aspect of the proposed approach is that the 3D
reconstruction is applied in each resolution level of the spatial DWT
separately, using the reconstruction of the previous spatial resolution
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for determining the motion vectors between all the frames to drive
the MCTF within the current resolution level. As a consequence, the
technique of [96] has the advantage of explicit ME/MC like those meth-
ods surveyed above. However, it also inherits the computational draw-
back of the cross-frame volumetric reconstruction identified above as a
significant impediment for techniques such as [131]; specifically, com-
putational issues are compounded in [96] since a separate volumetric
reconstruction, as well as ME/MC process, is conducted for each spatial
resolution level. As a consequence, we will focus on the ME/MC-based
reconstructions discussed above rather than that of [96].

4.5 Experimental Observations

We now examine the performance of MC-BCS-SPL reconstruction rela-
tive to its simple intraframe and 3D volumetric variants to demonstrate
that significant gain results from the explicit exploitation of motion
information within the CS reconstruction of video. We use the common
video sequences “Coastguard” (296 frames), “Football” (120 frames),
“Foreman” (296 frames), “Hall Monitor” (88 frames), “Mobile” (296
frames), “Mother and Daughter” (296 frames), “Stefan” (296 frames),
and “Susie” (72 frames). These sequences have grayscale CIF frames of
size 352 × 240 or 352 × 288. All of the video sequences are subject to
block-based random projection applied frame by frame; i.e., by parti-
tioning each frame p into B × B blocks and applying to each block an
orthonormalized dense Gaussian measurement matrix of size MBp × B2

such that the subrate for frame p is Sp = MBp/B2. Unless otherwise
stated, we use a block size of B = 16 and a GOP size of P = 8 frames.

MC-BCS-SPL employs BCS-SPL for reconstruction of individual
MC residual frames as well as in the multihypothesis initialization of
Figure 4.3. For this BCS-SPL reconstruction, we use a 2D DCT as
the transform operator and hard thresholding, for simplicity. For the
ME/MC process in MC-BCS-SPL, we use full-search ME with quarter-
pixel accuracy and a search window of ±15 pixels. MAX ITERATIONS
in Figure 4.2 is set to 5.

We compare MC-BCS-SPL to the intraframe-BCS-SPL and
3D-BCS-SPL alternatives. The most straightforward reconstruction is
intraframe BCS-SPL (we use a block-based B × B 2D DCT as the
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transform basis). Additionally, we consider 3D-BCS-SPL with the 3D
transform operator being a B × B × P 3D DCT. Additionally, we note
that 3D-BCS-SPL uses a GOP size of P = 4 frames which we have
observed empirically to yield results superior to a GOP size of P = 8.

As a primary measure of reconstruction quality, we calculate the
peak signal-to-noise ratio (PSNR) averaged over all the frames under
consideration. For MC-BCS-SPL, various subrates are employed for the
key frames as well as the non-key frames; thus, we have two subrates in
use: the key-frame subrate (SK), and the non-key-frame subrate (SNK).
First, we consider the case wherein all frames have the same subrate,
i.e., SK = SNK. Alternatively, we also consider the case wherein the key
frames have an increased subrate with respect to the non-key frames,
i.e., SK > SNK. A summary of the results from both cases is presented
in Tables 4.2 and 4.3.

Table 4.2. Average PSNR in dB for several video sequences.

MC-BCS-SPL

S Intraframe BCS-SPL 3D-BCS-SPL SK = SNK SK > SNK

Coastguard
0.1 22.69 22.76 23.06 24.19
0.2 24.70 24.76 25.78 27.12
0.3 26.37 26.45 28.29 29.62
0.4 27.99 27.95 30.88 32.21
0.5 29.60 29.57 33.58 34.73

Football
0.1 20.68 20.84 20.86 20.73
0.2 22.39 22.67 23.35 23.36
0.3 24.08 24.35 25.51 25.86
0.4 25.68 25.93 27.44 28.05
0.5 27.31 27.53 29.40 30.11

Foreman
0.1 25.99 26.47 27.58 28.00
0.2 28.83 29.18 31.01 32.27
0.3 31.21 31.36 33.50 34.95
0.4 33.18 33.29 35.76 37.41
0.5 35.07 35.13 38.05 39.83

Hall monitor
0.1 22.55 22.78 22.79 26.43
0.2 24.78 25.22 25.31 30.76
0.3 26.89 27.26 27.40 33.20
0.4 28.81 29.06 29.35 35.54
0.5 30.73 30.96 31.34 38.12
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Table 4.3. Average PSNR in dB for several video sequences.

MC-BCS-SPL

S Intraframe BCS-SPL 3D-BCS-SPL SK = SNK SK > SNK

Mobile
0.1 17.76 18.11 18.58 19.58
0.2 19.32 19.88 21.52 22.42
0.3 20.89 21.55 24.48 25.54
0.4 22.44 23.14 27.29 28.57
0.5 24.08 24.87 30.14 31.36

Mother and Daughter
0.1 30.14 30.37 30.74 33.88
0.2 33.08 33.34 34.01 38.29
0.3 35.57 35.62 36.65 40.71
0.4 37.46 37.48 38.88 42.82
0.5 39.34 39.34 41.04 44.97

Stefan
0.1 19.73 19.87 19.78 19.97
0.2 21.37 21.56 22.73 22.72
0.3 23.07 23.22 25.52 25.87
0.4 24.77 24.79 27.92 28.50
0.5 26.47 26.54 30.33 30.89

Susie
0.1 30.01 30.37 31.19 30.58
0.2 32.82 32.92 34.37 34.78
0.3 34.86 34.82 36.80 37.32
0.4 36.45 36.42 38.82 39.48
0.5 37.99 38.01 40.75 41.46

4.5.1 MC-BCS-SPL with Equal Subrate

The simplest situation is when all frames of a GOP, including the
key frame, have an identical subrate. In this case, the average subrate
per frame is S = SK = SNK. The PSNR performance of MC-BCS-SPL
is measured at various subrates and compared with intraframe BCS-
SPL and 3D-BCS-SPL in Figures 4.6 and 4.7. In these graphs, we see
that 3D-BCS-SPL yields similar or slightly superior performance as
compared to intraframe BCS-SPL; this is as expected because the 3D
reconstruction exploits what frame-to-frame correlation exists in the
sequence. However, the advantage is not very large in most instances,
so it would appear insufficient to reconstruct based simply on frame-
to-frame correlation.
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Fig. 4.6 Performance of MC-BCS-SPL on the “Susie” sequence for equal subrate, SK =
SNK. PSNR is averaged over all frames of the sequence.

On the other hand, ME/MC in MC-BCS-SPL can largely track
object motion and, hence, can increase compressibility in the sense of
(2.4) in the resulting residual to yield higher-quality reconstruction.
It is notable that MC-BCS-SPL achieves a 3–5 dB gain at the higher
subrates for some sequences (“Coastguard,” “Foreman,” “Mobile,”
“Stefan”), as can be observed in Tables 4.2 and 4.3.

4.5.2 MC-BCS-SPL with Key Frames of Increased Subrate

Since the key frames constitute only a small number of the total
frames in a sequence, and they serve somewhat as “anchors” to the
forward/backward ME process of reconstruction in a GOP, it is rea-
sonable to consider the situation in which key frames are given a higher
subrate than the non-key frames such that they are reconstructed with
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Fig. 4.7 Performance of MC-BCS-SPL on the “Football” sequence for equal subrate, SK =
SNK. PSNR is averaged over all frames of the sequence.

high quality. Thus, we perform a battery of experiments which measure
the PSNR when the subrate for key frames is increased beyond that of
the non-key frames. In this situation, we set a target average subrate
per frame to be S — we will have S range from 0.1 to 0.5 in the exper-
iments. We then set the key-frame subrate to be incrementally higher
than S; i.e., we use

SK = S + 0.4, (4.7)

which we have found works well in practice. Then, the corresponding
non-key subrate needed to produce the desired target S is

SNK =
S · P − SK

P − 1
, (4.8)

where P is the GOP size.
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Fig. 4.8 Performance of MC-BCS-SPL on the “Mother and Daughter” sequence for unequal
subrate; PSNR is averaged over all frames of the sequence. “MC-BCS-SPL (unequal)” refers
to MC-BCS-SPL with SK > SNK; “MC-BCS-SPL (equal)” refers to MC-BCS-SPL with
SK = SNK.

Figures 4.8 and 4.9 depict the performance of MC-BCS-SPL with
increased SK. In these graphs, MC-BCS-SPL with increased SK is
compared to MC-BCS-SPL with SK = SNK, i.e., the “equal subrate”
paradigm as well as to 3D-BCS-SPL (intraframe BCS-SPL is omit-
ted due to similar performance to 3D-BCS-SPL). As expected, the
higher-quality reconstruction of the key frames results in a significant
performance improvement for MC-BCS-SPL. In particular, remarkable
gains are exhibited for the “Hall Monitor” and “Mother and Daughter”
sequences which did not show a large gain over intraframe BCS-SPL
in the previous, equal-subrate experiments.

Additionally, visual quality of the intraframe BCS-SPL and
MC-BCS-SPL recoveries of the “Football” and “Susie” sequences are
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Fig. 4.9 Performance of MC-BCS-SPL on the “Hall Monitor” sequence for unequal subrate;
PSNR is averaged over all frames of the sequence. “MC-BCS-SPL (unequal)” refers to MC-
BCS-SPL with SK > SNK; “MC-BCS-SPL (equal)” refers to MC-BCS-SPL with SK = SNK.

compared in Figures 4.10 and 4.11 for the center frame (p = 4) of the
first GOP. As can be seen, MC-BCS-SPL works especially well on static
parts in the image due to ME/MC successfully reducing the residual
energy between consecutive frames in such static regions. For more
dynamic sequences, although MC-BCS-SPL still results in some degree
of “mosquito noise” on moving objects, it provides visual quality sig-
nificantly superior to that of intraframe BCS-SPL.

4.6 Perspectives

CS reconstruction of video is a challenging task because computation
and memory burdens grow quickly as the size of problem increases due
to the inherent multidimensional nature of the data. As a consequence,
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Fig. 4.10 Reconstructed center frame for “Football.” (a) Intraframe BCS-SPL with S = 0.3,
24.02 dB; (b) MC-BCS-SPL with unequal subrate and S = 0.3 (SK = 0.7, and SNK = 0.24).

we focus on reconstruction driven by block-based processing, employ-
ing the BCS-SPL algorithm — a simple but powerful block-based still-
image reconstruction — as the foundation necessary for video recon-
struction. While independent frame-by-frame reconstruction is fast and
straightforward, improved reconstruction quality results from exploit-
ing the frame-to-frame motion of objects. Incorporating reconstruc-
tion from an ME/MC-based residual, the MC-BCS-SPL technique dis-
cussed here alternatively reconstructs frames of the video sequence
and their corresponding motion fields, using one to improve the qual-
ity of the other in an iterative fashion. The resulting reconstruc-
tion achieves significantly higher quality than does either intraframe
BCS-SPL reconstruction or a 3D variant of BCS-SPL that features
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Fig. 4.11 Reconstructed center frame for “Susie.” (a) Intraframe BCS-SPL with S = 0.3,
32.48 dB; (b) MC-BCS-SPL with unequal subrate and S = 0.3 (SK = 0.7, and SNK = 0.24).

temporal decorrelation merely in the form of a motion-agnostic 3D
transform.

The experimental results above have focused on comparing MC-
BCS-SPL to its intraframe and 3D variants. Subsequently, we will
compare the performance of MC-BCS-SPL to several other alternative
strategies for the CS of video, including the prominent benchmarks
Modified-CS-Residual [81] and k–t FOCUSS [74, 75]. However, before
we do, we first introduce an enhanced, multihypothesis approach for
generating motion-based predictions, the topic that we take up next.



5
Multihypothesis Prediction for Compressed

Sensing of Video

Previously, we explored the compressed sensing (CS) reconstruction of
video with a focus on techniques that form an explicit prediction using
motion estimation (ME) and motion compensation (MC). One form of
MC widely employed in traditional video coding is that of multihypoth-
esis (MH) prediction [112, 57] in which multiple, distinct predictions are
created and then combined to yield a composite prediction superior to
any of the constituent single-hypothesis (SH) predictions. Our discus-
sion so far has been largely limited to SH prediction for CS, although
[34] did propose a form of MH-based reconstruction.

In [118], an alternative strategy for incorporating MH prediction
into the CS reconstruction of video so as to increase quality over equiv-
alent SH-driven reconstruction was proposed. Central to [118] is a
formulation of the MH prediction process in the domain of random
CS projections; as this formulation results in an ill-posed optimiza-
tion, [118] resorts to Tikhonov regularization [117] which is widely
used to yield tractable solutions to such ill-posed problems. We now
describe this Tikhonov-based regularization, and we compare it exper-
imentally against the alternative strategy enforcing an �1-based spar-
sity constraint on the MH predictions considered in [34]. We find that

373
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the Tikhonov-regularized approach usually yields significantly superior
reconstruction, particularly when the video frames are acquired at very
low subrate. As before, we use block-based CS measurement of video
frames and the block-based compressed sensing with smooth projected
Landweber reconstruction (BCS-SPL) still-image CS reconstruction as
the foundation upon which the video CS reconstruction is built.

5.1 Prediction Strategies for Residual Reconstruction

As discussed previously, residual reconstruction seeks a more compress-
ible representation (in the sense of (2.4)) of a given signal by recovering
the difference between the signal and some prediction. The philosophy
is very similar to that of differential pulse code modulation (DPCM) in
traditional source coding — if a prediction is similar to the signal it is
intended to approximate, then the value of the residual over most of the
support is insignificant in magnitude. In traditional video coding (e.g.,
the MPEG standards [67, 68]), this technique is used extensively to
create low-energy residual frames which are then fed into a still-image
coder.

Residual reconstruction can be easily integrated into the CS
paradigm because it requires no change on the part of the signal acqui-
sition and has a simple implementation on the reconstruction side. Sup-
pose that we have a video frame x with a measurement basis Φ such
that measurements y are calculated via

y = Φx. (5.1)

If we are given some kind of prediction of x in the ambient domain of
x — namely, x̃, which we hope satisfies x̃ ≈ x — then we can find the
residual r between the two frames as r = x − x̃. Because y is acquired
simply by taking the inner products of x with the rows of Φ, the pro-
jection of r into the measurement basis is

q = Φr = Φ(x − x̃) = y − Φx̃. (5.2)

Because of the linear nature of the signal-sampling process, a simple
subtraction of a projection of x̃ provides us with a projected resid-
ual signal at the reconstruction side without changing our signal-
acquisition procedure. As demonstrated in Figure 4.1, the residual r will
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be more amenable to CS reconstruction because it is more compressible
(in the sense of (2.4)) than x itself, leading to the final reconstruction
of y being

x̂ = x̃ + Reconstruct(q,Φ), (5.3)

where Reconstruct(·) is some suitable CS reconstruction. In the residual
reconstruction used by [81, 101, 127], the prediction x̃ of the cur-
rent frame is derived from the reference frame or frames using a
least-squares or Kalman-filtering prediction. On the other hand, in
motion-compensated BCS-SPL (MC-BCS-SPL) [90], as well as in focal
underdetermined system solver in k–t space (k–t FOCUSS) [74, 75]
and distributed compressed video sensing (DISCOS) [34], prediction is
driven by an MC of reference frames. In these latter strategies, ME
produces a motion-vector field which attempts to match the reference
frames to the current frame.

That is, the key to the successful use of ME/MC in residual recon-
struction is to create an MC prediction x̃ from a given reference frame
xref that is as close as possible to x such that the resulting residual, r,
is highly compressible in the sense of (2.4). Thus, the goal is to carry
out the optimization,

x̃ = arg min
p∈P(xref)

‖x − p‖22 , (5.4)

where P(xref) is the set of all possible motion-compensated frames pro-
ducible from the given reference frame under the particular ME/MC
model used. However, in the CS paradigm, the creation of the predic-
tion x̃ via ME/MC occurs during CS reconstruction; as a consequence,
x is unknown, and (5.4) cannot be implemented as written. This is
contrary to traditional source coding of video in which x is known to
the video encoder such that it can effectively solve (5.4) directly.

There are two strategies to approximate (5.4) using only informa-
tion known to the CS reconstruction. The first would be to approxi-
mate x with an initial CS reconstruction from y and use the resulting
approximation to x to drive the prediction process; i.e.,

x̃ = arg min
p∈P(xref)

‖Reconstruct(y,Φ) − p‖22, (5.5)
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where Reconstruct(·) is some suitable CS reconstruction. The result-
ing x̃ is then used in (5.3) to form x̂ using a CS reconstruction from the
measurement-domain residual, q = y − Φx̃. This approach was used in
MC-BCS-SPL [90] as well as in k–t FOCUSS [74, 75].

An alternative strategy proposed in [118] is to recast the optimiza-
tion of (5.5) from the ambient signal domain of x into the measurement
domain of y; specifically,

x̃ = arg min
p∈P(xref)

‖Φ(x − p)‖22

= arg min
p∈P(xref)

‖y − Φp‖22. (5.6)

Although (5.6) reformulates the search for the prediction into the mea-
surement domain, the Johnson-Lindenstrauss (JL) lemma [1, 29, 73]
suggests that the solution of (5.6) will likely coincide with that of (5.4).
In brief, the JL lemma holds that L points in R

N can be projected into
a K-dimensional subspace while approximately maintaining pairwise
distances as long as K ≥ O(logL). As a consequence, the x̃ closest to
x in (5.4) should map to the Φx̃ that is closest to y in (5.6), provided
that the number of candidates searched in the minimizations is not too
large.

Our experimental observations reveal that the measurement-domain
prediction of (5.6) provides better predictions in general than the
ambient-domain strategy represented by (5.5) (see Figure 5.1). This is
due to the fact that (5.5) uses only a noisy approximation to x, whereas
the JL lemma suggests that (5.6) should nearly duplicate the targeted
procedure of (5.4). As a consequence, we focus on measurement-domain
predictions in the form of (5.6) in the following.

5.2 SH Frame Prediction for CS Reconstruction

In traditional video coding, frame predictions are calculated using
ME/MC from temporally neighboring frames which are likely to have
similar content to the target frame. Specifically, the frame at time t to
be predicted, xt, is split into blocks of size B × B. The chosen reference
frame or frames are then searched within a spatial region surrounding
the location of the target block within xt. The single best-matching
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Fig. 5.1 Recovery of frame x2 of “Foreman” using frame x1 as reference.

block, chosen according to some distortion measure, in the reference
frames then forms the prediction of the target block. This is known
as SH prediction in the video-coding community since a single, best-
matching hypothesis prediction (a block in one of the reference frames,
in this case) is chosen to represent the target block.

In the CS reconstruction of video wherein each frame has been
acquired using BCS applied frame by frame, the ensemble of measure-
ments for frame xt is

yt,i = Φxt,i, (5.7)

where i is a block index. In order to create a prediction of a given block,
xt,i, we recast (5.6) as

x̃t,i = arg min
p∈Ht,i

‖yt,i − Φp‖22 , (5.8)
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where Ht,i is the set of blocks culled from the reference frame or frames
within the search space given for block xt,i (typically a rectangular
region about the spatial location of xt,i in the frame).

5.3 MH Frame Prediction for CS Reconstruction

Video coding has long exploited MH methods to improve video-coding
quality [57, 112]; common forms include subpixel-accurate MC [56],
overlapped-block MC [93, 95], bidirectional MC (B-frames), and long-
term-memory MC [134]. These techniques can be viewed as trade-
offs specific to a bitrate-limited environment; that is, these techniques
impose specific structures on the hypotheses that form the ultimate pre-
diction in order to limit the amount of additional motion-vector rate
overhead entailed by multiple predictions of a single block. However,
in the context of CS reconstruction, the MH predictions are all calcu-
lated at the reconstruction side of the system, there is no associated
rate burden, and we are able to consider more intensive forms of MH
prediction, essentially combining all the best hypotheses available from
the reference frames without the imposition of rate-limiting structure.

As proposed in [118], for an MH CS reconstruction, the goal is to
reformulate (5.4) so that, instead of choosing a single hypothesis, we
find an optimal linear combination of all hypotheses contained in the
search set; i.e, (5.4) becomes

wt,i = argmin
w
‖xt,i −Ht,iw‖22, (5.9)

x̃t,i = Ht,iwt,i, (5.10)

where we have also recast (5.4) for block-based prediction with i being
the block index. Here, Ht,i is a matrix of dimensionality B2 × K whose
columns are the rasterizations of the possible blocks within the search
space of the reference frames, and K = |Ht,i|. In this context, wt,i is a
column vector which represents the optimal linear combination of the
columns of Ht,i; the solution of this optimization can be calculated as
a simple least-squares (LSQ) problem.

Of course, in the case of CS reconstruction, (5.10), like (5.4) before
it, cannot be implemented — we cannot calculate wt,i directly because
we do not have access to xt,i; we have only its measurements, yt,i. We
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thus adopt the measurement-domain approach of (5.8), modifying it
to the MH case. However, this makes the optimization a much more
difficult, ill-posed problem, because we have to calculate the optimal
linear combination within the projected space of Φ; i.e., combining
(5.8) and (5.9) yields

ŵt,i = argmin
w
‖yt,i − ΦHt,iw‖22. (5.11)

In general, wt,i �= ŵt,i unless Φ is square, which is necessarily not the
case for CS. The ill-posed nature of this problem requires some form of
regularization of the LSQ optimization.

The most common approach to regularizing an LSQ problem is
Tikhonov regularization [117] which imposes an �2 penalty on the norm
of ŵt,i,

ŵt,i = argmin
w
‖yt,i − ΦHt,iw‖22 + λ2‖Γw‖22, (5.12)

where Γ is known as the Tikhonov matrix. The Γ term allows the
imposition of prior knowledge on the solution; in some contexts, it may
make sense to use a high-pass or difference operator for Γ to obtain a
smooth result, or, in others, to set Γ = I to impose an energy constraint
on the solution. In our case, we take the approach that hypotheses
which are the most dissimilar from the target block should be given
less weight than hypotheses which are most similar. Specifically, we
propose a diagonal Γ in the form of

Γ =



‖yt,i − Φh1‖22 0

. . .
0 ‖yt,i − ΦhK‖22


 , (5.13)

where h1, h2, . . . , hK are the columns of Ht,i. With this structure, Γ
penalizes weights of large magnitude assigned to hypotheses which have
a significant distance from yt,i when projected into the measurement
domain. For each block, then, ŵt,i can be calculated directly by the
usual Tikhonov solution,

ŵt,i = ((ΦHt,i)T(ΦHt,i) + λ2ΓTΓ)−1(ΦHt,i)Tyt,i. (5.14)

In this formulation, λ is a scale factor that controls the relative effect
of the Tikhonov-regularization term in the optimization of (5.12). The
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choice of λ can have a large effect on the performance of the regular-
ization, so it is important to find a value which imposes an adequate
level of regularization without causing ‖yt,i − ΦHt,iw‖22 to become too
large. We found in practice that, over a large set of different frames,
a value of λ ∈ [0.1,0.3] provided the best results; consequently, we use
λ = 0.25 from this point on.

5.4 An Alternate �1-Based MH Regularization

The DISCOS algorithm of [34] can be viewed, in essence, as an alterna-
tive to the Tikhonov regularization used in (5.12)–(5.13). Specifically,
it was assumed in [34] that the MH weights wt,i in (5.9) are sparse;
i.e., only a relative few of the possible hypotheses in Ht,i should con-
tribute the prediction in (5.10). As a consequence of this assumption,
[34] imposes an �1 penalty term on ŵt,i in the form of

ŵt,i = argmin
w
‖ΦHt,iw − yt,i‖22 + λ‖w‖1 . (5.15)

The intuition here is that only a few blocks within the search space
should contribute significantly to the linear combination; this is reflec-
tive of the structure often imposed on MH prediction in traditional
video coding, structure that is necessary to limit motion-vector bitrate
overhead. However, in the context of CS reconstruction, a regulariza-
tion enforcing sparsity is needlessly restrictive on the structure of ŵt,i,
which can potentially result in lower prediction quality. Furthermore,
Tikhonov regularization in the form of (5.12)–(5.13) is a much more
amenable solution than �1 regularization in terms of scalability and
computation time, as well. That is, with the �1 penalty, the optimiza-
tion in (5.15) is approached as a traditional CS problem using some
generic CS solver. Such CS solvers are based on some kind of iterative
search to arrive at a final solution and are thus strictly linear in the
computation. Yet, the weights ŵt,i must be calculated for every block
in xt, so the computation time can be very significant when using these
linear solvers. On the other hand, the Tikhonov regularization we pro-
pose can be calculated directly at each block with simple matrix math
in the form of (5.14).



5.5 Experimental Observations 381

We note that [99] also features an �1-regularized multihypothesis
prediction. Briefly, [99] culls a selection of candidate blocks from pre-
viously reconstruction frames into an overcomplete dictionary which
is then used in the �1-driven CS reconstruction of the current block.
In essence, this process is equivalent to (5.15); the key difference with
respect to [34] is that [99] uses the resulting prediction (x̃t,i in (5.10))
as the reconstruction of current block directly, rather than employing a
subsequent residual reconstruction as in (5.3). Finally, [60] is similar to
[99], differing mainly in that the overcomplete dictionary is iteratively
refined via multiple reconstructions of a frame.

A focus of experimental results which follow is an investigation into
the relative performance of the Tikhonov-regularization approach to
MH prediction discussed above as opposed to that of the �1-based
approach of [34]. We explore these experimental results next.

5.5 Experimental Observations

Initially, we consider the first two consecutive frames, x1 and x2, of
a given video sequence — the first frame, x1, is used as a reference
frame, while the second frame, x2, is the “test frame” used to measure
reconstruction performance. In all cases, the reference frame has a rel-
atively high subrate of S1 = 0.5 and is reconstructed using BCS-SPL.
On the other hand, the test frame has a range of subrates, S2 ≤ S1.
This disparity in subrates is intended to reflect the situation in which
the video sequence is acquired with relatively high subrates for certain
“key frames” which anchor the ME/MC-driven reconstruction process
for one or more intervening “non-key frames” (e.g., [34, 90]). Through-
out, we use a block size of B = 16 for BCS with an orthonormalized
dense Gaussian measurement matrix, and a discrete wavelet transform
(DWT) with four levels of decomposition as the sparsity basis for BCS-
SPL reconstruction.

The reconstructed reference frame is used to create a prediction
of each block of the test frame; afterward, residual reconstruction
(i.e., (5.2)–(5.3)) of the test frame is conducted. We investigate sev-
eral prediction strategies as discussed above. Namely, we consider the
Tikhonov-regularized MH prediction of (5.12)–(5.14) with λ = 0.25. We
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also use the �1-regularized MH prediction of (5.15) as proposed in [34].
For this �1-regularized MH prediction, we use gradient projection for
sparse reconstruction (GPSR) [47] to find the weights, although other
CS solvers could be used. For comparison, we also consider performance
of the SH prediction of (5.8), as well as the straightforward BCS-SPL
reconstruction of the test frame independently of the reference frame,
which we refer to as “independent reconstruction” in the results to fol-
low. In all cases, a spatial window size of ±15 pixels about the current
block is used as the search space for finding the hypotheses for both
the SH and MH predictions.

5.5.1 Measurement-Domain and Ambient-Domain
Prediction

Above, we discussed two options for creation of a prediction of the
test frame — an ambient-domain strategy via (5.5) driven by an initial
CS reconstruction of the test frame, and a measurement-domain pro-
cedure via (5.6). We now compare the relative performance, as mea-
sured in peak signal-to-noise ratio (PSNR), of these two prediction
approaches. For simplicity, we consider SH prediction in both cases;
i.e., the measurement-domain strategy consists of the block-based SH
prediction of (5.8), while the corresponding ambient-domain approach
is a blocked version of (5.5). The resulting reconstruction performance
for the “Foreman” sequence over a range of test-frame subrates is pre-
sented in Figure 5.1. The measurement-domain strategy significantly
outperforms the equivalent ambient-domain approach at the lower sub-
rates. At the higher subrates, the gain is less important due to the fact
that the initial CS reconstruction used in (5.5) is of fairly high quality
itself. Nonetheless, the measurement-domain approach is superior over
the entire range of subrates examined; as a consequence, we will focus
on it exclusively in the remainder of these results.

5.5.2 Single Reference Frame

We now consider the recovery of test frame x2 using x1 as reference
and evaluate the various measurement-domain prediction approaches
discussed above. The PSNR performance of the test-frame recovery as
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Fig. 5.2 Recovery of frame x2 of “Foreman” using frame x1 as reference.

the subrate, S2, for the test frame varies is presented in Figure 5.2.
As can be seen in Figure 5.2, the proposed Tikhonov-regularized MH
prediction provides significantly superior recovery for x2 at low subrates
as compared to the �1-regularized prediction of [34]. For higher subrates
near S2 ≈ 0.5, the performance of the �1 regularization is generally more
competitive.

5.5.3 Bidirectional Reference Frames

Bidirectional prediction is often used with ME/MC in traditional video
coding to overcome occlusion by deriving temporal predictions from
both future as well as past reference frames. Such bidirectional predic-
tion is easily incorporated into the ME/MC-based CS reconstructions
evaluated in the previous section. Specifically, we now consider the
situation in which we reconstruct frame x2 using both frames x1 and
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x3 as reference. This bidirectional prediction has the effect of simply
doubling the size of the hypothesis set, which can significantly increase
the computation time of the prediction, but can overcome certain forms
of occlusion.

We repeat the experiment of the previous section for the bidirec-
tional case, presenting the results in Figure 5.3. In this case, the second
reference frame, x3, was reconstructed with a subrate of S3 = S1 = 0.5
using BCS-SPL independently from the other two frames.

In the bidirectional case, we see that the relative performance of
each of the frame-prediction techniques is similar to that seen for the
single-reference-frame case. However, the use of bidirectional prediction
increases the PSNR by about 0.5 dB for the MH methods. We still have
that the Tikhonov-regularized MH prediction always outperforms both
the �1-regularized MH prediction and as well as the SH prediction.
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Fig. 5.3 Recovery of frame x2 of “Foreman” using frames x1 and x3 as reference.
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5.6 Comparison of Various CS Techniques for Video

We now present a comprehensive comparison between several CS
reconstruction algorithms for video. We use the first 88 frames of
the “Foreman,” “Coastguard,” “Hall Monitor,” and “Mother and
Daughter” sequences. In all cases, we use a group of pictures (GOP)
size of P = 8 frames with key frames starting each GOP having a sub-
rate of SK = 0.7. The intervening non-key frames have subrate SNK

varying between 0.1 and 0.5.
We compare a video reconstruction that couples the MH prediction

described above with the BCS-SPL still-image recovery considered pre-
viously. This technique, which we refer to as multihypothesis BCS-SPL
(MH-BCS-SPL), performs an iterative reconstruction of the non-key
frames of the GOP based upon bidirectional MH predictions driven
from the neighboring key frames. Once the entire GOP has been recon-
structed, the process is repeated using the newly reconstructed frames
to refine the MH predictions.

Additionally, we compare to the motion-compensated version of
BCS-SPL discussed previously (i.e., MC-BCS-SPL) which was our orig-
inal, single-hypothesis extension of BCS-SPL from still images to video
as proposed in [90]; we use the implementation available at the BCS-
SPL website.1 Being block-based techniques, both MH-BCS-SPL as
well as MC-BCS-SPL feature block-based measurement in the spatial
domain applied identically to each video frame; the block size for both
techniques is 16 × 16. An orthonormalized dense Gaussian measure-
ment matrix is used for BCS, and a dual-tree discrete wavelet transform
(DDWT) [78] is used as the sparsity transform.

We also compare to two prominent CS reconstruction algorithms,
Modified-CS-Residual [128] and k–t FOCUSS [74, 75], both of which
we have described previously. As discussed before, k–t FOCUSS uses
iterative recovery with ME/MC of non-key frames from the neighbor-
ing key frames. On the other hand, Modified-CS-Residual does not
employ ME/MC but rather attempts to explicitly track the sparsity
pattern frame to frame. We use the implementations of k–t FOCUSS2

1 http://www.ece.msstate.edu/˜fowler/BCSSPL/.
2 http://bisp.kaist.ac.kr/research_02.htm.
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and Modified-CS-Residual3 available from their respective authors.
Although both k–t FOCUSS and Modified-CS-Residual were originally
designed for the reconstruction of dynamic magnetic resonance imag-
ing (MRI) data, they are both largely considered to be benchmark
algorithms in present literature for the reconstruction of video as well.
Both techniques, being oriented toward dynamic MRI, feature frame-
by-frame measurement driven by a 2D full-frame Fourier transform
applied identically to each frame with low-frequency coefficients bene-
fiting from a higher subrate.

Finally, we compare to straightforward, “intraframe” reconstruc-
tion of each frame of the sequence independently from the others. We
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Fig. 5.4 Performance of various CS reconstruction algorithms on the 88-frame “Foreman”
sequence for SK = 0.7. PSNR is averaged over all frames of the sequence.

3 http://home.engineering.iastate.edu/˜luwei/modcs/.
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consider the multiscale (MS) variant of BCS-SPL discussed previously
and originally proposed in [50]; in the results here, we refer to it as
“intraframe MS-BCS-SPL.” We also consider an intraframe implemen-
tation of total variation (TV) reconstruction [17] (“intraframe TV”).
We note that, in the still-image results presented earlier, MS-BCS-
SPL and TV outperformed other techniques in terms of reconstruction
quality, with MS-BCS-SPL generally producing higher-quality recon-
structions with much less computation, but TV being amenable to
fast, spatial-domain measurement with a structurally random matrix
(SRM). In these results, the intraframe MS-BCS-SPL features dense
Gaussian block-based measurement in the wavelet domain with blocks
of size 16 × 16, while intraframe TV uses a full-frame block-Hadamard
SRM measurement [54].
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Fig. 5.5 Performance of various CS reconstruction algorithms on the 88-frame “Coastguard”
sequence for SK = 0.7. PSNR is averaged over all frames of the sequence.
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Although there are a number of other reconstruction algorithms for
video in the literature, none of these, to our knowledge, have implemen-
tations readily available at the time of this writing. As a consequence,
we present results only for those algorithms identified above.

Figures 5.4–5.7 illustrate the performance of the various reconstruc-
tions for varying non-key-frame subrate SNK. Table 5.1 tabulates these
same results as well. Visual results for a single frame of the “Foreman”
sequence are given in Figure 5.8.

As can be seen notably in Table 5.1, the multihypothesis-driven MH-
BCS-SPL almost always outperforms the other techniques considered,
sometimes by as much as 2–3 dB. The performance of the other tech-
niques is rather mixed — sometimes MC-BCS-SPL or intraframe TV
will be somewhat competitive with MH-BCS-SPL for certain subrates
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Fig. 5.6 Performance of various CS reconstruction algorithms on the 88-frame “Hall Mon-
itor” sequence for SK = 0.7. PSNR is averaged over all frames of the sequence.
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Fig. 5.7 Performance of various CS reconstruction algorithms on the 88-frame “Mother and
Daughter” sequence for SK = 0.7. PSNR is averaged over all frames of the sequence.

and sequences. Additionally, the two techniques designed for dynamic
MRI are typically rather distant in performance from MH-BCS-SPL
with the exception of low subrates for the “Hall Monitor” sequence.

Although none of the implementations have been particularly opti-
mized for execution speed, we present reconstruction times for the
algorithms in Table 5.2. Here, we measure the typical length of time
required to reconstruction one frame out of the sequence. We see that,
while intraframe MS-BCS-SPL reconstruction is the fastest, intraframe
TV reconstruction is the slowest, requiring some 20 minutes per frame.

5.7 Perspectives

In this discussion, we have considered how the high degree of frame-
to-frame temporal correlation in video signals can be exploited to
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Table 5.1. Average PSNR in dB for several video sequences; SK = 0.7, 88 frames.

SNK

Algorithm 0.1 0.2 0.3 0.4 0.5

Foreman
MH-BCS-SPL 32.6 35.1 37.0 38.6 40.1
MC-BCS-SPL 31.2 34.1 36.2 38.1 39.7
k–t FOCUSS 27.2 29.4 32.4 34.1 33.9
Modified-CS-Residual 25.7 27.4 29.0 30.6 32.3
Intraframe MS-BCS-SPL 28.3 31.2 32.5 34.1 36.2
Intraframe TV 29.4 33.2 35.9 38.1 40.3

Coastguard
MH-BCS-SPL 28.1 30.7 32.8 34.7 36.7
MC-BCS-SPL 25.8 28.1 29.8 31.3 33.0
k–t FOCUSS 24.3 26.2 27.8 29.3 29.2
Modified-CS-Residual 23.7 25.3 26.8 28.3 30.0
Intraframe MS-BCS-SPL 24.4 26.2 27.5 28.5 29.5
Intraframe TV 24.2 26.2 27.9 29.5 31.2

Hall Monitor
MH-BCS-SPL 32.5 34.9 36.9 38.6 40.3
MC-BCS-SPL 31.8 34.8 35.8 36.4 36.9
k–t FOCUSS 32.9 34.3 35.7 36.6 36.6
Modified-CS-Residual 26.4 27.6 28.9 30.2 31.7
Intraframe MS-BCS-SPL 24.0 27.0 28.5 30.0 31.8
Intraframe TV 25.7 30.0 33.4 36.4 39.0

Mother and Daughter
MH-BCS-SPL 38.7 41.4 43.5 45.2 46.9
MC-BCS-SPL 38.3 40.5 41.7 42.6 43.4
k–t FOCUSS 36.1 37.5 39.1 40.3 40.2
Modified-CS-Residual 30.0 31.4 32.8 34.3 35.9
Intraframe MS-BCS-SPL 32.0 35.4 37.1 38.4 40.2
Intraframe TV 32.9 36.4 39.0 41.2 43.3

enhance CS recovery by forming MH predictions using a distance-
weighted Tikhonov regularization to find the best linear combination
of hypotheses. The MH predictions were used to create a measurement-
domain residual of the frame to be recovered. Such a residual is typ-
ically more compressible — in the sense of (2.4) — than the original
frame, rendering it more amenable to CS recovery. This procedure for
video recovery shows a significant distortion-performance improvement
over a straightforward recovery of the frames independently. We also
demonstrated that distance-weighted Tikhonov regularization for MH
prediction provides better performance than an equivalent �1-based
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Fig. 5.8 Reconstructions of frame 4 of the “Foreman” sequence for SK = 0.7 and SNK = 0.3.

Table 5.2. Reconstruction time in seconds per frame (spf).

Algorithm Time (spf)

Intraframe MS-BCS-SPL 10
k–t FOCUSS 46
MC-BCS-SPL 159
MH-BCS-SPL 324
Modified-CS-Residual 699
Intraframe TV 1223
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regularization that assumes a sparse combination of hypotheses, espe-
cially at low subrates.

The MH prediction was coupled with the BCS-SPL [89] still-image
recovery considered previously to create a video reconstruction employ-
ing bidirectional MH prediction from the key frames at either end of
a GOP. The resulting MH-BCS-SPL technique was compared to sev-
eral alternative CS reconstructions for video, including the prominent
k–t FOCUSS [74, 75] and Modified-CS-Residual [128] methods that
were initially designed for dynamic-MRI reconstruction. Overall, MH-
BCS-SPL almost always outperformed the other reconstructions, yield-
ing higher PSNR for a given non-key-frame subrate.

The discussion thus far has centered on the CS reconstruction of
video, exploiting the fundamental concept of ME/MC-driven predic-
tions and residual reconstruction. Next, we extend this same basic
framework to a different application in which multiple views of a scene
are captured from slightly different perspectives. In this multiview sce-
nario, we find that we can employ the same residual-reconstruction
paradigm to significantly improve performance over a simple, straight-
forward CS reconstruction of each view independently.



6
Compressed Sensing of Multiview

Image and Video

The falling cost of high-quality video sensors coupled with their increas-
ingly widespread use in surveillance, defense, and entertainment appli-
cations has led to heightened demand for multi-sensor video-acquisition
systems. In surveillance applications, for example, the use of video-
sensor networks has been widely investigated, but the memory and
computation burden of capturing and encoding high-quality video for
transmission and storage has served as an impediment to the adoption
of multi-sensor technology in many applications [100]. In the area of
entertainment, much work has been done recently to promote the pro-
duction and consumption of 3D video content, which so far has largely
taken the form of stereoscopic video-display systems with a fixed view-
point. Future display technologies, such as holography, promise a more
realistic and engaging viewing experience by permitting many different
viewing angles; however, capturing such multiview-image data requires
a system more sophisticated than the two-camera approach widely
used today. In these and other applications, the excessively voluminous
nature of multiview-image and video data causes a serious impediment
to the continued development of these fields.

In the context of multiview images and multiview video, com-
pressed sensing (CS) has the potential to greatly enhance multiview

393
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signal acquisition not only by decreasing the inherent memory cost
by lowering the number of measurements taken, but also by decreas-
ing the computational burden on the sensors. There have been several
approaches proposed for CS reconstruction of multiview images (e.g.,
[26, 80, 130]). Although it is assumed that the images in the multiview
set are acquired independently from one another (perhaps with mul-
tiple single-pixel cameras), the reconstruction typically targets a joint
recovery of the entire set of multiview images, capitalizing on the joint
sparsity of the multiview set as well as the correlation between images.
However, such joint reconstruction is problematic in that the compu-
tation burdens imposed are likely to be significant, particularly so as
the number of views increases.

As an alternative multiview reconstruction, [119, 120, 121] pro-
posed the extension of the motion-compensated BCS-SPL (MC-BCS-
SPL) [90] framework discussed previously to the multiview scenario.
Specifically, [119, 120, 121] capitalized on disparity estimation (DE)
and disparity compensation (DC) between adjacent views to provide a
prediction of the current image to be reconstructed. The DE/DC pre-
diction drives a residual-based CS reconstruction of the current view
in a procedure quite similar to MC-BCS-SPL with DE/DC replacing
motion estimation (ME) and motion compensation (MC).

Here, we overview this disparity-compensated variant of BCS-SPL
which was called DC-BCS-SPL in [119, 120, 121]. We also extend this
DC-BCS-SPL process to the case of multiview video, wherein DE/DC
is coupled with ME/MC such that predictions for the current view are
created both from adjacent views as well as from temporally neigh-
boring frames. Experimental results show that the incorporation of
DE/DC and, in the case of multiview video, ME/MC, into the CS-
reconstruction process provides a significant increase in reconstruction
quality as compared to the straightforward CS reconstruction of each
individual view independently of the others.

6.1 Single-View Reconstruction

In order to provide a CS reconstruction of a single view within a set
of multiview images, [119] couples BCS-SPL still-image reconstruction
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with a DE/DC-driven prediction process, calling the resulting algo-
rithm DC-BCS-SPL. The DC-BCS-SPL algorithm is partitioned into
two phases. In the first phase, a predictor xp for current view xd is
created by bidirectionally interpolating the closest adjacent views,

xp = ImageInterpolation(xd−1,xd+1), (6.1)

where xd−1 and xd+1 are the “left”and “right” neighbors of xd, respec-
tively. Next, the residual r is calculated between the original observa-
tion yd and the observation resulting from the projection of xp using
the same measurement matrix, Φ; i.e.,

r = yd − Φxp. (6.2)

This residual then drives the BCS-SPL reconstruction. We note that,
alternatively, xp could be produced by direct BCS-SPL reconstruction
of the current image, i.e., xp = CSReconstruction(yd,Φ). However, we
have found that, usually, the quality of the interpolated image is much
better than that of the direct BCS-SPL reconstruction.

In the second phase, the reconstructed residual r̂ produces the
reconstruction x̂d = r̂ + xp. The prediction process then repeats, only
this time, DE/DC is used instead of interpolation. Specifically, DVd−1

and DVd+1 are the fields of left and right disparity vectors, respectively;
these are obtained from DE applied to the current reconstruction, x̂d,
of the current image and the left and right adjacent images. The dis-
parity vectors then drive the DC of the current image to produce the
current prediction, xp, and its corresponding residual, r. This second
phase of the algorithm is repeated k times. The complete algorithm is
illustrated in Figure 6.1.

We note that there exist a variety of DE/DC methods of varying
sophistication, with some producing high-quality predictions driven by
depth or parallax information between views — any of these DE/DC
strategies could be used in DC-BCS-SPL by simply placing them in
the DE and DC blocks in Figure 6.1. However, we have opted instead
to employ a simple block-based DE/DC process which is, in fact, quite
similar to the traditional full-search block-based ME/MC process used
in MC-BCS-SPL for the CS reconstruction of video. We have found that
the more sophisticated depth- or parallax-driven DE/DC methods are
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Fig. 6.1 The DC-BCS-SPL single-view reconstruction procedure (from [120]).

computationally cumbersome when compared to block-based DE/DC,
which, on the other hand, provides adequate predictions for a much
lower computational cost.

6.2 Multistage Reconstruction of Multiview Images

Above, we described the CS recovery of a single frame within a mul-
tiview dataset, given a disparity-compensated prediction made from
adjacent views. It was implicitly assumed that these left and right
views themselves had already been reconstructed via some process.
However, we can see that, assuming that these left and right views are
also recovered from CS measurements, the performance of the recovery
of any given view is dependent upon the quality of the views used as
references. The higher the distortion present in the reference frames,
the higher the distortion will be in the recovery of the given view of
current interest.

To reconstruct the entire multiview dataset from individual CS mea-
surements of each of the constituent frames, [121] proposes the multi-
stage process illustrated in Figure 6.2. We see that the reconstruction
of the entire multiview set is partitioned into three stages. In the first,
or initial, stage, each image in the multiview set is reconstructed indi-
vidually from the received set of measurements using BCS-SPL. In the
second stage (the “basic” stage), each image is reconstructed using the
DC-BCS-SPL procedure of Figure 6.1 with the left and right reference
views as obtained from the preceding initial stage.
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Fig. 6.2 The multistage DC-BCS-SPL multiview reconstruction procedure (from [121]).

Subsequently, one or more refinement stages are performed. A
refinement stage of the algorithm is simply the repetition of the basic
stage as described above with the results from the second stage substi-
tuted for the references used to drive the DE/DC-based reconstruction.
The stages could conceivably be repeated until there is no significant
difference between consecutive passes; however, in [121], only one refine-
ment stage in order to minimize the overall computational complexity
of the reconstruction.

6.3 Reconstruction of Multiview Video

The multistage DC-BCS-SPL procedure described above reconstructs
an entire set of multiview images; however, the algorithm can be eas-
ily extended for use with multiview video in which we have multi-
ple time instances of each view. To do so, we perform predictions not
only along the disparity (or view) axis, but also along the temporal
axis via ME/MC, as illustrated in Figure. 6.3. The algorithm is parti-
tioned into three phases, much like DC-BCS-SPL for multiview images.
In the initial stage, each frame in each view in the multiview video
is reconstructed individually from the received set of measurements
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Fig. 6.3 The multistage DC-BCS-SPL reconstruction using ME/MC and DE/DC for mul-
tiview video.

using BCS-SPL. In the second stage, for each image xt
d at time t and

view d, a prediction is created by directionally interpolating the BCS-
SPL reconstructions of the closest frames in both the temporal and
disparity directions; we use the procedure in [59] for this directional
interpolation. These four neighboring views/frames—xt

d−1, xt−1
d , xt

d+1,
and xt+1

d —are first spatially lowpass filtered, then a classical forward
block-matching DE or ME is performed between them, which is further
refined in order to obtain a bidirectional view/temporal interpolation.
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The initial predictor used for the image compensation is obtained by
averaging the interpolations on temporal and disparity axes; i.e.,

xp = 0.5 · TemporalInterpolation(x̂t−1
d , x̂t+1

d )

+0.5 · DisparityInterpolation(x̂t
d−1, x̂

t
d+1). (6.3)

Next, we compute the residual between the measurements and the
Φt

d projection of the predicted frame. This residual in the measurement
domain is then reconstructed using BCS-SPL and added back to the
prediction to generate a reconstruction, x̂t

d. x̂t
d is further refined in the

basic stage by calculating fields of disparity vectors, (DVt
d−1,DVt

d+1),
and temporal motion vectors, (MVt−1

d ,MVt+1
d ). These vectors then

drive the compensation to form both view and temporal predictions
of the current frame from the neighboring frames. The final prediction
is obtained by averaging these four predictions, and the procedure is
repeated.

Subsequently, one or more refinement stages are performed. A
refinement stage of the algorithm is simply the repetition of the basic
stage as described above with the results from the second stage sub-
stituted for the references used to drive the compensated-CS recon-
struction. The stages could conceivably be repeated until there is no
significant difference between consecutive passes; however, we use only
one refinement stage.

6.4 Experimental Observations

6.4.1 Multiview Images

In order to observe the effectiveness of DC-BCS-SPL recovery, we eval-
uate its performance at each stage of reconstruction shown in Fig-
ure 6.2 — i.e., at the initial stage, at the basic stage, and at the refine-
ment stage. In our experiments, we use a dual-tree discrete wavelet
transform (DDWT) [78] with six levels of decomposition as the sparse
representation basis, Ψ; we note that the performance of the DDWT
within the BCS-SPL framework was found to be among the best of the
transforms investigated in [89]. For BCS measurement, a block size of
64 × 64 pixels is used with an orthonormalized dense Gaussian matrix,
and DE for each view is calculated using a block size of 16 × 16 pixels
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with a search window of 32 × 32 pixels. All results are averaged over
5 independent trials. For multiview image data, we use the multiview
images from the Middlebury stereo-image database,1 an example of
which is depicted in Figure 6.4.

In this experimental framework, we evaluate the reconstruction per-
formance in terms of a peak signal-to-noise ratio (PSNR) obtained for
a variety of subrates S, with each view of the multiview dataset having

Fig. 6.4 The seven-image multiview image set “Aloe.”
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Fig. 6.5 Average recovery distortion performance over subrate for the “Aloe” multiview-
image dataset.

1 http://cat.middlebury.edu/stereo/data.html.
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Fig. 6.6 Average recovery distortion performance over subrate for the “Baby” multiview-
image dataset.

the same subrate; we average the PSNR obtained across all the views
and report an average PSNR over the entire multiview dataset. The
results are presented in Figures 6.5 and 6.6. We see that the incorpo-
ration of DE/DC into the reconstruction process as it occurs in the
basic stage of Figure 6.2 provides a significant increase in reconstruc-
tion quality as opposed to the independent reconstruction of each view
(the initial stage). Furthermore, the refinement stage further improves
the reconstruction quality, especially as the subrate increases.

6.4.2 Multiview Video

For multiview video, each frame within each view of a multiview video
sequence has the same subrate. ME uses the same process as DE —
namely, full-search block ME with a block size of 16 × 16 and a search
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Fig. 6.7 Average recovery distortion performance over subrate for the “Ballet” multiview
video.

window of 32 × 32. Figures 6.7 and 6.8 present the performance at
each of the three stages of reconstruction for several 256 × 192 multi-
view sequences over various subrates. As before, DE/DC coupled with
ME/MC in the DC-BCS-SPL reconstruction occurring in the basic
stage improves reconstruction quality dramatically over the indepen-
dent reconstruction in the initial stage, and the refinement stage pro-
duces even further quality improvement.

6.5 Perspectives

In this discussion, we have considered the CS recovery of multiview
images as well as multiview video. Central to this reconstruction pro-
cess was the creation of predictions of the current view from adjacent
views via DE and DC, and, in the case of multiview video, predictions
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Fig. 6.8 Average recovery distortion performance over subrate for the “Book Arrival” mul-
tiview video.

from temporally neighboring frames via ME and MC. These DE/DC-
and ME/MC-based predictions were used in a CS reconstruction of a
residual rather than the frame directly. Experimental results displayed
an increase in performance when using DE/DC and ME/MC predic-
tions in comparison to recoveries which merely reconstruct each image
independently from one another.



7
Conclusions

In this survey, we have overviewed the emerging concept of compressed
sensing (CS) with a particular focus on recent proposals for its use
with a variety of imaging media, including still images, motion video,
as well as multiview images and video. Throughout, we have considered
a variety of CS reconstruction techniques proposed in recent literature
and have examined relative performance of several prominent recon-
struction algorithms for each of the various imagery formats. We have
given particular emphasis to block-based measurement and reconstruc-
tion which has the advantages of significantly reduced memory and
computation with respect to other approaches relying on full-frame CS
measurement operators.

For multiple-image scenarios, including video and multiview
imagery, we have capitalized on established strategies in traditional
source coding for motion estimation and compensation as well as dis-
parity estimation and compensation. These predictive techniques were
used to exploit frame-to-frame redundancies due to object motion and
parallax to provide residual frames that are more compressible — in
a sense of a rapid decay of coefficient magnitude within a sparsity
transform — than their corresponding original frames. Reconstruction

404



405

from such prediction residuals was seen to significantly improve per-
formance as compared to straightforward reconstruction of each frame
independently.

Ultimately, we argue that CS sensors that simultaneously reduce
dimension during signal acquisition may eventually provide for image
sampling devices at greatly reduced cost. We anticipate that certain
applications — such as infrared imaging, in which single sensing ele-
ments are extremely expensive, or remote signal-sensing platforms that
are severely resource-constrained in terms of power, storage, and com-
munication bandwidth — stand to benefit greatly from CS. Effective
CS reconstruction algorithms, such as those that we survey here, will
thus be critical in enabling widespread adoption of such cheap and
efficient CS sensors in a variety of imaging applications.
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