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Abstract 

In this paper, we investigate the performance of a 
sparsity-preserving graph embedding based approach, 

called [I graph, in hyperspectral image dimensionality 

reduction (DR), and propose noise-adjusted sparsity

preserving(NASP) based DR when training samples are 

unavailable. In conjunction with the state-of-the-art 

hyperspectral image classifier, support vector machine 
with composite kernels (SVM-CK), the experimental 

study show that NASP can significantly improve the 
classification accuracy, compared to other widely used 

DR methods. 

1 Introduction 

Hyperspectral imaging (HSI) is a relatively recent 
technology in which the airbone remote sensors cap
ture the reflected energy in hundreds to thousands nar
row spectral bands in each spatial location in the image 
scene. It is well known that the high data dimension
ality results in the problem of curse of dimensionality 
(or the Hughes phenomenom). Dimensionality reduc
tion (DR), therefore plays a critical step in most of the 
HSI analysis, especially in c1assifiation task when the 
number of labeled training samples is limited. Com
monly used DR techniques include unsupervised ap
proaches, such as principal component analysis (PCA), 
noise-adjusted principal component analysis (NAPCA) 
[7], as well as supervised approaches, such as Linear 
Discriminant Analysis (LDA) [1]. 

Recently, Yan et al. [11] proposed a general ap
proach known as graph embedding to unify all of 
the linear DR algorithms within a common frame
work. In graph embedding, graph construction be-
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comes critical: an appropriate graph provides a high 
level of dimensionality reduction and preserves the im
portant information, such as anomalous pixels, man
ifold,and multimodal structures. Two popular graph 
structures: k-nearest neighbor and E-radius ball [6] 

connect points within its k-nearest samples or surround
ing E ball, respectively, the graph-weight then calcu
lated based on pairwise Euclidean distance [2]. It is 
simple to construct those graphs but the parameters-the 
size of sample neighborhood k and the radius of the 
ball E- are very sensitive to noise and difficult to be 
identified in real world applications. Departing from 
traditional graph construction, Cheng et al. [4] ex
ploits the merits of sparse representation to construct 
a novel graph, called [I-graph, which inherits many ad
vantages of sparse reconstruction and creates an adap
tive and nonparametric graph. Motivated by the promis
ing results of Sparsity Preserving projection method 
(SP) derived from [I-graph [4], we propose an unsu
pervised dimensionality reduction algorithm, Noise Ad
justed Sparsity Preserving (NASP), to reduce the di
mension of HSI before employing an classifier such 
as Composite Kernels-based Support Vector Machine 
(SVM-CK). Unlike PCA or NAPCA, NASP is designed 
to preserve the underlying multimodal structure and the 
sparsity of non-Gaussian class distribution in the pro
jected domain. Compared to the original SP-based DR 
method, NASP is expected to better preserve the under
lying data structure after noise is better taken care of. 

The remainder of the discussion is organized as fol
lows. Section 2 describes the graph-embedding and 
proposed DR algorithm: NASP. Section 3 presents the 
SVM-CK-based HSI classifier, and NASP-SVM-CK in 
conjunction with the NASP-based DR process. Section 
4 reports real-data experimental results. Finally, several 
concluding remarks are made in Sec. 5. 



2 Graph Embedding and NASP 

Let a hyperspectral data matrix be represented as 
X = [XI,X2, . . .  , XM ] and Xi E lRN

, where !vI is the 
number of pixels and N is the number of bands. From 
the point of view of graph embedding, let G={X, W} 
be an undirected weighted graph with vertex set X and 
similarity (weight) matrix W E lRMxM where Wij 
measures the similarity between two vertices, Xi and 
Xj. The diagonal matrix D and the Laplacian matrix 
L of a graph G are defined as: L = D - W, Dii = 

Lj# i Wij, Vi. In case of linear projection, the reduced 
dimensional feature space is derived by linear projec
tion: y = pT X, where P is the unitary projection ma
trix, then the objective function becomes: 

P* = arO' min '\"'" IlpT Xi - pT X ,I12wi, b '1' '1' � J J 
P XBX P=q i#j 

or pi P=q 
(1) 

where q is a constant and B is a penalty graph. In light 
of linearization of graph embedding, PCA has intrin
sic graph connecting all of the data pairs with equal 
weithts and constrained by scale normalization on the 
projection vector (Wij = 1/ M, i oJ j; B = 1). The 
quality of the aforementioned DR techniques, there
fore, completely relies on the construction of intrin
sic graph. However, the two existed famous graphs: 
k-nearest-neighbor method, and E ball method have 
some limitations: (1) Sensitive to data noise: Due to the 
graph-weight construction (Gaussian-kernel [2] or 12_ 
reconstruction [9]) is found on pair-wise Euclidean dis
tance, they are very sensitive to noise. (2) Datum-non 
adaptive neighborhood: to determine the neighborhood 
of each sample, both methods use fixed global parame
ter: k or radius-E, and hence fail to offer datum-adaptive 
neighboorhood. To overcome those shortcommings, the 
II-graph [4] has been proposed by utilizing the recent 
advances in sparse coding [5]. 

An II-graph [4] exploits the sparse representation 
(SR) of each pixel in term of the rest ones in the training 
data set. In particular, II-graph uncovers the underlying 
sparse reconstruction relationship of each pixel, and it is 
desirable to preserve these reconstruction relationships 
in the reduced-dimensional-feature space. Based on the 
reconstruction of II-graph, the proposed DR algorithm, 
NASP, is to suppress the noise effect in data structure, 
which can be performed with two steps: the first step 
conducts noise-whitening to the original data, and the 
second step calculates P via (2). Note that in the low
dimensional space, the reconstruction capability is mea
sured by 12 norm instead by 11 norm for computational 
efficiency. Derived from (I ),the transformation matrix 

P can be found via optimization: 

P* = min '\"'" IlpT Xi - pT xJI12wiJ, 
P'1'XXl'P=I � i#j 

= min tr(pT XLXT P) 
P'1'XX'1'P=I 

. tr(pT X LXT P) 
= m)n tr(pT XXT P) (2) 

where Wij is determined by the reconstruction of 11_ 
graph and penalty graph B = I. This tmce -
mtio optimization problem is easily solved by the gen
eralized eigenvalue problem as: X LXT Pk+!-j = 

AjX XT Pk+I-j where Pk+I-j is the eigenvector cor
responding to the Jth largest eigenvalue Aj as well as 
the (k + 1 - j)th column vector of the transform ma
trix P. The construction of II-graph represents four 
advantages: (1) robust to noise: thanks to the overall 
SR instead of conventionally pairwise Euclidean dis
tance and the noise-whitenning step, II-graph is more 
robust to noise in many pattern recognition tasks. (2) 
sparsity: recent research on manifold learning [2] shows 
that the sparse graph conveys valuable information for 
classification purpose; the sparsity of II-graph is auto
matically determined instead of manually identified as 
in k-nearest-neighbor and E-ball method. II-graph is 
therefore a non-parametric method. (3) datum-adaptive 
neighborhood: the number of neighbors defined by 11_ 
graph is adaptive to each sample, which is valuable 
for aplications with unevenly distributed data, e.g, hy
perspectral image with non-homogenous regions. (4) 
unified construction: conventional graph construction 
process is typically divided in two steps: the graph 
adjacency structure and the graph-weight construction; 
however, those two steps are solved simultaneously in 
II-graph. 

It is hence expected that SP and NASP will sur
pass PCA and NAPCA as a DR projection when data 
are severely non-Gaussian, which is a prevalent situa
tion in real world applications. In the next section, we 
will show that the combination of NASP and SVM-CK 
outperforms the existing DR methods for spectral -
spatial HSI classification. 

3 Spectral-Spatial Hyperspectral Image 
Classification Scheme 

Neighboring hyperspectral pixels usually belong to 
the same class because their spectral signatures are 
highly correlated. A mechanism to incorporate the con

textual information into spectral information can signf
icantly improve the classification accuracy. In this sec
tion, we first introduce the famous spectral - spatial 



classifiers in the literature: SVM-CK, then outline the 
proposed algorithms: NASP-SVM-CK. 

Support Vector Machine (SVM) and SVM-CK were 
fully described in [3 , 10] as state-of-the-art kernel-based 
classification techniques. Note that one usually works 
with the transfonned input data, rather than the orig
inal input space samples, Xi. A full family of com
posite kernels for the combination of spectral kernel 
(Kw) and spatial (Ks) kernel was described in [3]. No
tice that in [3], the authors: (a) Define the spatial fea
tures (x�) be the average of the reflectance values in a 
given window around the pixel Xi for each band, and 
let the spectral features xi be the actual spectral sig
nature (Xi = xi). (b) Using polynomial kernel for 
spectral features and RBF kernel for the spatial fea
tures. In this paper, we use weighted summation ker
nel: K(Xi,Xj) = JLKs(xi,xj) + (1 - JL)Kw(xi,xj) 
with one modification: polynomial kernel is used for 
spatial features and RBF kernel is used for spectral fea
tures. We found that this new composite-kernel gives 
better result than original one: from 2 to 3(%) higher in 
overall accuracy in our experiments. 

It has been shown in the literature that NAPCA can 
dramatically outperform PCA as a preprocessing tool 
in preserving useful infonnation in the original data . 
We therefore argue that NASP can serve as a better DR 
method than SP for SVM-CK. In this paper, NASP
SVM-CK, is proposed to solve spectral - spatial HSI 
classification. 

NASP-SVM-CK 

algorithm: 
I )Conduct noise-whitening to the original data 
2)Construct the II-graph and graph weight W 
3)Derive the projection matrix P from (2) 
4)Project training data Y = pTX 
5)Project test data E = pTA 
6)Calculate Ks, Kw, and K kernels 
7)Class labels z = SVM(K, <;"" , IL) 

In the following section, we compare our pro
posed algorithm, NASP-SVM-CK with SP-SVM-CK, 
SVM-CK, PCA-SVM-CK, NAPCA-SVM-CK, and 
MLRsubMLL, [8], a recently proposed supervised 
spectral - spatial classification. 

4 Experimental Results 

In this section, we demonstrate the effectiveness of 
the proposed algorithm on real hyperspectral image,the 
popular AVIRIS Indian Pines image. The one-against
one strategy is employed for C-class classification us
ing SVM and SVM-CK. To perfonn SVM, we use the 
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Figure 1: Effects of the number of dimensions in the 

transformed domain 

popular tookkit libSVM 1. The AVIRIS sensor gener
ates 220 bands across the spectral range from 0.2 to 
2.4 JLTn; however, in the experiment, we remove 18 wa
ter absorbtion bands. This image has spatial resolution 
of 20 m per pixel and spatial dimension 145 x 145. 
It contains 16 ground-truth classes, for each of the 16 
classes, we randomly choose 10% of the labeled sam
ples for training and the rest 90% for testing accord
ing to fair and unfair strategies. The parameters of 
SVM and SVM-CK (<;"" ,IL) = (256, 0.3536, 0.7) are 
obtained by ten-fold cross validation and the param
eters of MLRsubMLL are derived from [8]. The ef
fects of reduced dimensions on the overall accuracy are 
shown in Fig. l. In this figure, SVM-CK is used as a 
comparison baseline, the proposed algorithms: NASP
SVM-CK is compared to PCA-SVM-CK. The results 
show that NASP-SVM-CK gave the best overall accu
racy at the low number of dimensions. 

From Fig. 1, we choose d = 80 which fairly rep
resents the classification performance of each algo
rithm, the classification accuracy for each class, the 
overall accuracy, average accuracy, and the K, coef
ficient are shown in Table I using different clasis
fiers on the test set. The overall accuracy is com
puted by the ratio between correctly classified test sam
ples and the total number of test samples, and the av
erage accuracy is the mean of the 16 True Positive 
Rates (TPR), and the Cohen-K, coefficient is computed 
by weighting the measure accuracies which shows 
a robust measure of the degree of agreement. In 
most cases, the proposed NASP-SVM-CK outperforms 

Ihttp://www.csie.ntu.edu.tw/-cjlin/libsvrn/ 



Table 1: CLASSIFICATION ACCURACY (%) FOR THE INDIAN PINES IMAGE ON THE TEST SET 

Accuracy SVM MLRsub MLRsubMLL 
Overall 82.61 80.23 89.98 
Average 84.78 70.43 73.15 

'"' 0.8 0.77 0.88 

Groundtruth SVM MLRsub 

MLRsubMLL SVM-CK PCA-SVM-CK 

NAPCA-SVM-CK SP-SVM-CK NASP-SVM-CK 

Figure 2: G roundtruth and classification maps of the In

dian P ines image 

the original SVM-CK, MLRsubMLL, PCA-SVM-CK, 
NAPCA-SVM-CK, and SP-SVM-CK. Overall, NASP
SVM-CK provides the best perfonnance especially in 
the extreme case, e.g., class 1, 7, and 9 which has only 
5, 3, and 2 training samples. This is very important in 
hyperspectral image analysis due to costly training data 
collection. The classification maps on labeled pixels ob
tained from the various algorithms are shown in Fig. 2. 
One can see that by incorporating the contextual infor
mation, the NASP-SVM-CK algorithm provides a much 
smoother classification map than the other methods. 

5 Conclusions 

DR has been widely used as a preprocessing step for 
hyperspectral image analysis. In this paper, we inves
tigate DR under the unified framework of graph em
bedding. By preserving sparsity property in the orig
inal data, the 11 graph method can outperfonn other 
widely used methods, such as PCA and LDA. In this 
paper, we propose the NASP based DR method to sup
press the noise effect. In conjunction with the state-of
the-art hyperspectral image classifier, SVM-CK, where 

SVM-CK PCA NAPCA SP NASP 
93.76 94.66 96.43 95.71 97.73 

92.86 95.47 96.69 97.18 97.89 

0.92 0.93 0.96 0.95 0.97 

RBF kernel is used in the spectral dimension and poly
nomial kernel for the spatial dimension, the real data 
experiment shows that NASP can significantly improve 
the classification accuracy, compared to SP and other 
widely used DR methods. 

References 

[I] T. Bandos, L. Bruzzone, and G. Camps-Valls. Classi

fication of hyperspectral images with regularized lin

ear discriminant analysis. IEEE Transactions on Geo

science and Remote Sensing, 47(3):862 -873, March 

2009. 
[2] M. Belkin and P. Niyogi. Laplacian eigenmaps for di

mensionality reduction and data representation. Neural 

Comput., 15(6): 1373-1396, June 2003. 
[3] G. Camps-Valls, L. Gomez-Chova, J. Munoz-Mari, 

J. Vila-Frances, and J. Calpe-Maravilla. Composite ker

nels for hyperspectral image classification. IEEE Geo

science and Remote Sensing Letters, 3( I ):93 - 97, Jan

uary 2006. 
[4] B. Cheng, J. Yang, S. Yan, Y. Fu, and T. Huang. Learn

ing with [l-graph for image analysis. IEEE Transac

tions on Image Processing, 19(4):858 -866, April 20 10. 
[5] D. L. Donoho. For most large underdetermined systems 

of linear equations the minimal II-norm solution is also 

the sparsest solution. Comm. Pure Appl. Math, 59:797-

829.2004. 
[6] D. Eppstein, M. S. Paterson, and F. F. Yao. On nearest 

neighbor graphs. Discrete & Computational Geometry, 

17(3):263-282, April 1997. 
[7] T. T. Jolliffe. Principal Component Analysis. Springer

Verlag, New York, 1986. 
[8] J. Li, J. Bioucas-Dias, and A. Plaza. Spectral-spatial hy

perspectral image segmentation using subspace multi

nomial logistic regression and markov random fields. 

IEEE Transactions on Geoscience and Remote Sensing, 

50(3):809 -823, March 2012. 
[9] S. T. Roweis and L. K. Saul. Nonlinear dimensional

ity reduction by locally linear embedding. SCIENCE, 

290:2323-2326, 2000. 
[10] V. N. Vapnik. The Nature of Statistical Learning The

ory. Springer-Verlag, New York, 1995. 
[II] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and 

S. Lin. Graph embedding and extensions: A general 

framework for dimensionality reduction. IEEE Trans

actions on Pattern Analysis and Machine Intelligence, 

29(1):40 -51, January 2007. 


